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1 Clusteranalyse

Man unterscheidet in der Statistik zwischen strukturpriifenden und strukturbildenden Verfahren.
Wihrend strukturpriifende Verfahren bestehende Hypothesen iiberpriifen, dienen strukturbildende
Verfahren der explorativen Analyse unbekannter Datenstrukturen. Die Clusteranalyse gehort zu den
strukturbildenden Verfahren.

Weiterhin wird zwischen Clusterformation und der eigentlichen Clusteranalyse unterschieden.

* Clusterformation:
Will man beispielsweise anhand von Koérpermallen Konfektionsgrollen festlegen, die fiir mog-
lichst viele Kunden eine passende Auswahl ermoglichen, so ist die Clusterformation die geeig-
nete Methode. In diesem Fall wird die Anzahl der Konfektionsgréllen (Cluster) vorgegeben und
die Objekte werden diesen Gruppen moglichst optimal zugeordnet.

* Clusteranalyse:
In der Clusteranalyse werden hingegen keine Gruppen vorgegeben. Ziel ist es, durch Biindelung
der Objekte natiirliche Gruppenstrukturen zu identifizieren. Dabei gilt, dass die Objekte inner-
halb eines Clusters moglichst dhnlich sein sollen, wéhrend sich die Cluster untereinander mog-
lichst deutlich unterscheiden. Typische Anwendungsfelder sind unter anderem die Segmentie-
rung von Internetnutzern, die Kundensegmentierung oder die Bildung von Innovationstypen.

In vielen industriellen und sicherheitsrelevanten Anwendungen besteht die Aufgabe darin, anhand
mehrerer kontinuierlicher MessgroRRen unterschiedliche Objektklassen zu identifizieren. Ein klassi-
sches Beispiel ist die Gruppierung von Banknoten auf Basis geometrischer Merkmale. Fiihrt die Clus-
terbildung in diesem Fall zu einer klaren Trennung der Objekte, so ndhrt dies den Verdacht, dass die
Unterschiede der Cluster auf echte und gefdlschte Banknoten zurtickgefiihrt werden kénnen.

Die vorliegende Aufgabe ist typisch fiir eine Clusteranalyse mit intervallskalierten Variablen:

* mehrere metrische Merkmale
* unbekannte Klassenstruktur

* mogliche Ausreiller

¢ Kkorrelierte Variablen

Ziel ist es, aus einer multivariaten Datenmatrix automatisch natiirliche Gruppen zu identifizieren
und diese statistisch korrekt zu validieren.

In diesem Kapitel wird eine vollstidndige Clusteranalyse mit dem Ward-Algorithmus und einer Ver-
besserung mittels k-Means-Methodik, der euklidischen Distanz, der Mahalanobis-Distanz, einer
automatischen Bestimmung der optimalen Clusterzahl sowie einer statistischen Ausreillererkennung
durchgefiihrt.
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1.1 Voraussetzungen der Clusteranalyse

Wichtige Voraussetzungen, die bei der Durchfiihrung einer Clusteranalyse beachtet werden sollten, sind:

* Die Analyse kann fiir unterschiedliche Datentypen (kategoriale und metrische Daten) genutzt
werden. Hierzu wurden zahlreiche Ahnlichkeits- und DistanzmaRe (ProximititsmaRe) definiert.
OQM-Stat beschrankt sich bewusst auf metrische Daten mit den Distanzmallen ,,euklidische
Distanz“ und ,,Mahalanobis-Distanz“.

* Fehlende Werte und Ausreifler sollten vorab beseitigt werden, da sie die Analyseergebnisse deut-
lich verzerren konnen. OQM-Stat nutzt deshalb einen statistischen Ausreilertest, bei dem Ausrei-
Ber bei der Clusterbildung nicht beriicksichtigt werden. Die Ausreiller konnen jedoch weiterhin
dargestellt und ihr Ursprung beurteilt werden.

* Weisen die verwendeten Variablen grofe Unterschiede beziiglich ihres Wertebereichs auf, so
sollten diese auf ein einheitliches Niveau transformiert werden. Die Mahalanobis-Distanz
berticksichtigt dies automatisch durch die sogenannte Whitening-Transformation.

Bei der Berechnung der Cluster wird nach bestimmten Regeln entschieden, wie die Objekte zu
Gruppen zusammengefasst werden. Das Ergebnis dieses Prozesses hdngt nicht nur von der Wahl
des Clustering-Algorithmus ab, sondern auch davon, wie die Distanzen zwischen den Objekten
bestimmt werden.

Deshalb werden in OQM-Stat ausschlieflich der Ward-Algorithmus und ein partitionierendes k-
Means-Verfahren zur Verfeinerung der Gruppenzugehorigkeit eingesetzt.

Die hier eingesetzte Methodik setzt voraus:

* metrisch skalierte Variablen

 sinnvolle Abstandsdefinition

* Mittelwerte und Varianzen sind interpretierbar
* Korrelationen zwischen Variablen méglich

Die Daten liegen auf Intervallskalenniveau vor und erfiillen damit die Voraussetzungen fiir eine
multivariate Clusteranalyse.

1.2 Distanzmale in der Clusteranalyse

Ein zentrales Element jeder Clusteranalyse ist die Definition eines geeigneten Distanzmalles. Das
Distanzmall bestimmt, wie dhnlich oder undhnlich sich zwei Objekte im Merkmalsraum sind. Die
Qualitdt der resultierenden Cluster hdngt wesentlich von der Wahl dieses MalSes ab.

In der Literatur wurden zahlreiche Proximitdtsmale fir unterschiedliche Skalenniveaus entwickelt.
Fiir metrische Daten haben sich insbesondere die euklidische Distanz und die Mahalanobis-Distanz
etabliert.

OQM-Stat beschrankt sich bewusst auf diese beiden Distanzmalle, da sie fiir intervallskalierte
Daten mathematisch fundiert, numerisch stabil und in der industriellen Praxis bewéhrt sind.
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1.2.1 Euklidische Distanz

Die euklidische Distanz ist das klassische geometrische Distanzmall im p-dimensionalen Raum. Fiir
zwei Beobachtungsvektoren

X; :(xilaxiza---:xip)’ Yj :(x.il’ij""’ij)

lautet sie:

2
('xz'k - xjk)

1

P
dg (xl. X ) =
=
Geometrisch entspricht diese Distanz der Lange der Verbindungsstrecke zwischen zwei Punkten im
p-dimensionalen Merkmalsraum. Die euklidische Distanz besitzt folgende Eigenschaften:

* sie ist nicht negativ:

dE(xl.,xj)Z 0

* sie ist symmetrisch:

dE(xl-,xj)Z 0

* sie erfiillt die Dreiecksungleichung
* sieist invariant gegeniiber Translationen

Trotz ihrer einfachen geometrischen Interpretation weist die euklidische Distanz einige Schwéchen
auf, die in der Praxis beachtet werden miissen:

* Unterschiedliche Skalen der Variablen
Variablen mit groBem Wertebereich dominieren die Distanzberechnung.
* Korrelationen zwischen Variablen
Stark korrelierte Variablen gehen mehrfach in die Distanz ein und verfialschen damit die tatsachli-
che Struktur.
* Unterschiedliche Varianzen
Variablen mit hoher Streuung erhalten ein gréfSeres Gewicht als solche mit geringer Streuung.

Diese Effekte konnen zu verzerrten Clusterstrukturen fiihren, insbesondere bei technisch oder phy-
sikalisch gemessenen Grofen.
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1.2.2 Standardisierung und Whitening

Um die genannten Nachteile zu kompensieren, werden in der Praxis hdufig Transformationsverfah-
ren eingesetzt. Eine einfache Moglichkeit ist die Standardisierung jeder Variablen:

X; —
z, =ik Ay
O
mit w, = Mittelwert der k-ten Variablen
o« = Standardabweichung der k-ten Variablen

Diese Transformation fiihrt jedoch nur zu einer Skalierung, beriicksichtigt aber keine Korrelationen
zwischen den Variablen. Eine vollstdndige Losung bietet das sogenannte Whitening, bei dem
zusdtzlich die Kovarianzstruktur eliminiert wird.

1.2.3 Mahalanobis-Distanz

Die Mahalanobis-Distanz wurde von P. C. Mahalanobis eingefiihrt und stellt eine kovarianzgewich-
tete Distanz dar. Sie beriicksichtigt sowohl die Skalierung als auch die Korrelationen der Variablen.

Fiir zwei Beobachtungen xi und x;j lautet sie:

s (55,) = (3~ x,) =7 (- v,

mit ¥ = Kovarianzmatrix der Daten.

Die Mahalanobis-Distanz misst die Distanz zweier Punkte relativ zur Streuung der Datenwolke.
Punkte entlang einer stark gestreckten Hauptachse gelten als ndher beieinander als Punkte mit glei-
cher euklidischer Distanz in Richtung geringer Varianz. Geometrisch beschreibt die Mahalanobis-
Distanz Ellipsen (bzw. Hyperellipsoide) konstanter Dichte im Merkmalsraum.

1.2.4 Whitening-Transformation

Die Mahalanobis-Distanz kann durch eine lineare Transformation auf eine euklidische Distanz im
transformierten Raum zuriickgefiihrt werden. Sei die Kovarianzmatrix gegeben durch die Cholesky-
Zerlegung:

>=LL"
Dann gilt fiir den transformierten Vektor:
z=L" (x - ,u)
mit u = Mittelwertvektor.
Im transformierten Raum gilt dann:
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und fiir einen Punkt;

MD? =(x- ) 27 (- )= |of

Die Mahalanobis-Distanz entspricht somit der euklidischen Norm im whitened space. Die Mahala-
nobis-Distanz bietet entscheidende Vorteile gegeniiber der euklidischen Distanz:

* automatische Skalierung aller Variablen

» vollstandige Beriicksichtigung von Korrelationen

» physikalisch sinnvolle Gewichtung

* objektive Ausreierdefinition

* direkte Verbindung zur multivariaten Normalverteilung

Sie ist daher das bevorzugte Distanzmal$ fiir multivariate Qualitéts-, Mess- und Prozessdaten.
1.2.5 DistanzmaB in OQM-Stat

OQM-Stat unterstiitzt zwei Betriebsarten:

* Euklidischer Modus:
klassische Ward-Clusterung im Originalraum
* Mahalanobis-Modus:
*  Ward-Clusterung im whitened space (entspricht Mahalanobis-Distanzen im Originalraum)

Die Whitening-Transformation erfolgt automatisch auf Basis der Stichprobenkovarianzmatrix. Opti-
onal kann eine robuste Kovarianzschitzung verwendet werden. Damit wird sichergestellt, dass
sowohl skalierungs- als auch korrelationsbedingte Verzerrungen ausgeschlossen werden.

1.3 Der Ward-Algorithmus (hierarchische Clusteranalyse)

Der Ward-Algorithmus ist ein hierarchisches, agglomeratives Clustering-Verfahren und gehort
zu den am héaufigsten eingesetzten Methoden der Clusteranalyse fiir metrische Daten. Er zeichnet
sich durch eine besonders stabile und kompakte Clusterbildung aus und wird daher haufig in indus-
triellen und technischen Anwendungen eingesetzt.

Im Gegensatz zu partitionierenden Verfahren, bei denen die Anzahl der Cluster vorab festgelegt
werden muss, erzeugt der Ward-Algorithmus eine vollstindige Hierarchie der Datenstruktur.
Dadurch steht dem Anwender die gesamte Fusionshistorie zur Verfiigung, und die optimale Cluster-
zahl kann im Nachhinein bestimmt werden.

Agglomerative hierarchische
Klassifikationsverfahren

| [ [ [ \
Single- Complete- | | Average-
Linkage- Linkage- Linkage-
Verfahren | | Verfahren | | Verfahren

Median- Zentroid
Verfahren | | Verfahren

metrisches metrisches

beliebiges beliebiges beliebiges Skalenniveau:| | Skalenniveau: metrisches
Skalenniveau;| |Skalenniveau;| |Skalenniveau; ungewogene, sewogene ’| | Skalenniveau;
,,.nea.rest“ ,,Tfurthest“ durck.lschmttL Schwerpunki-| | Schwerpunki- Intra—Klassen—
neighbour neighbour Distanz . . varianz
distanz distanz
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1.3.1 Grundprinzip des Ward-Verfahrens

Der Ward-Algorithmus ist ein agglomeratives Verfahren, das schrittweise ausgehend von Einzelele-
menten grollere Cluster bildet:

* Zu Beginn bildet jede Beobachtung ein eigenes Cluster.

* In jedem Schritt werden genau die beiden Cluster fusioniert, deren Vereinigung den geringsten
Zuwachs der Gesamtstreuung verursacht.

* Dieser Prozess wird fortgesetzt, bis alle Objekte in einem einzigen Cluster vereinigt sind.

Das Verfahren minimiert in jedem Fusionsschritt den Anstieg der Within-Cluster-Streuquadrat-
summe (SSE). Die Gesamtstreuung der Daten ldsst sich zerlegen in:

T=W+8B
mit T = Gesamtstreuung (Total Sum of Squares)
W = Within-Cluster-Streuung
B = Between-Cluster-Streuung

Die Gesamtstreuung lautet:

=3 -

Die Within-Cluster-Streuung ist:

k 2
W=2 2 |xi—u

c=1x;eC,

und die Between-Cluster-Streuung:

k
2
B = nelu. - 4l
c=l
mit k = Anzahl der Cluster
n. = GroRe des Clusters
U = Schwerpunkt des Clusters
u = Gesamtschwerpunkt

1.3.2 Fusionskriterium nach Ward

Beim Ward-Verfahren wird in jedem Schritt jene Fusion gewdhlt, die den geringsten Anstieg der
Within-Cluster-Streuung verursacht. Fiir zwei Cluster C, und C} ergibt sich der Streuungszuwachs:

nn
a’tb
AW/CIb —4a 0
n

a

mit na, nb = Groflen der beiden Cluster
ua, ub = deren Zentren

11
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Diese Formel zeigt, dass sowohl der Abstand der Clusterzentren als auch deren GroRen in die Fusi-
onsentscheidung eingehen. Geometrisch bedeutet das Ward-Kriterium:

* Es werden bevorzugt Cluster mit naheliegenden Schwerpunkten fusioniert.
* Grole Cluster werden stdrker gewichtet als kleine.
* Die entstehenden Cluster sind méglichst kompakt und kugelformig.

Im Mahalanobis-Modus erfolgt die Berechnung im whitened space, sodass die Clusterbildung kova-
rianzbereinigt erfolgt.

1.3.3 Dendrogramm

Das Ergebnis des Ward-Verfahrens ist ein Dendrogramm, das die gesamte Fusionshierarchie gra-
fisch darstellt.

Dendrogramm (Ward)

156.2 ]
Distanz
Cut (k*=2)

125.0 7

93.76

62.51 7

31.25 7

Sl emb a0 L

* Auf der horizontalen Achse stehen die Objekte oder Cluster.
* Auf der vertikalen Achse ist der Fusionsabstand (Streuungszuwachs) dargestellt.
* Jeder Knoten représentiert eine Fusion zweier Cluster.

0.00

Durch das Setzen einer horizontalen Schnittlinie im Dendrogramm kann eine gewiinschte Clus-
teranzahl bestimmt werden.

1.3.4 Vorteile des Ward-Algorithmus

Der Ward-Algorithmus besitzt mehrere Vorteile, die ihn fiir industrielle Anwendungen besonders
geeignet machen:

* Er liefert sehr stabile und reproduzierbare Cluster.

* Die Cluster sind kompakt und gut interpretierbar.

* Die Methode ist robust gegeniiber Rauschen.

* Die gesamte Hierarchie bleibt verfiigbar.

* Keine Vorab-Festlegung der Clusterzahl erforderlich.

12
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Dadurch eignet sich der Ward-Algorithmus hervorragend fiir explorative Analysen komplexer
Messdaten.

Beziiglich des Ward-Verfahrens sei zudem darauf hingewiesen, dass eine Untersuchung von S. Berg
(1981) gezeigt hat, dass das Ward-Verfahren im Vergleich zu anderen Fusionsalgorithmen in den
meisten Féllen sehr gute Partitionen liefert und die Objekte mit hoher Zuverldssigkeit den ,richti-
gen“ Gruppen zuordnet. Das Ward-Verfahren kann somit als ein sehr leistungsfahiger und robuster
Fusionsalgorithmus angesehen werden.

1.3.5 Ward-Algorithmus in OQM-Stat

OQM-Stat implementiert den Ward-Algorithmus vollstdndig numerisch stabil und effizient. Je nach
gewdhltem Distanzmal arbeitet das Verfahren:

* im Originalraum mit euklidischer Distanz
e im whitened space mit Mahalanobis-Distanz

Dabei werden folgende Schritte automatisch durchgefiihrt:

* Berechnung der Distanzmatrix

* Hierarchische Fusion nach Ward

* Aufbau der vollstdndigen Hierarchie
* Erzeugung des Dendrogramms

* Speicherung aller Fusionsschritte

Optional kann auf Basis der Ward-Zentren ein k-Means-Verfahren zur Verfeinerung der Clusterzu-
ordnung gestartet werden. Das Ward-Verfahren verbindet die Vorteile hierarchischer Verfahren mit
einer klaren statistischen Interpretation. Es stellt damit eine ideale Grundlage fiir eine objektive
Clusterbildung dar. In Verbindung mit der Mahalanobis-Distanz entsteht ein Verfahren, das sowohl
geometrisch als auch statistisch optimal an die Struktur der Daten angepasst ist.

1.4 Bestimmung der optimalen Clusterzahl

Ein zentrales Problem der Clusteranalyse besteht in der Bestimmung der ,richtigen“ Anzahl von
Clustern. Wahrend hierarchische Verfahren wie der Ward-Algorithmus eine vollstdndige Hierarchie
erzeugen, liefern sie zunéchst keine eindeutige Entscheidung tiber die optimale Clusterzahl.

Um aus der Hierarchie eine sinnvolle Partition abzuleiten, miissen zusétzliche Kriterien herange-
zogen werden, welche die Trennschérfe der Cluster bewerten. In OQM-Stat wird hierzu das Calin-
ski-Harabasz-Kriterium (CH-Kriterium) eingesetzt.

1.4.1 Grundidee der Clusterzahlbestimmung

Die Clusteranalyse ist ein exploratives Verfahren. Im Gegensatz zu klassischen Hypothesentests
existiert keine a-priori bekannte Gruppenstruktur, die tiberpriift werden konnte. Stattdessen wird
versucht, aus den Daten selbst eine natiirliche Gruppierung zu extrahieren.

Dabei steht man vor der grundlegenden Frage:

¢  Wie viele Cluster sind in den Daten tatsdchlich enthalten?

13
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Eine triviale Losung wiére, jedes Objekt als eigenes Cluster zu betrachten. Ebenso trivial wére ein
einziges Cluster fiir alle Objekte. Beide Losungen sind jedoch inhaltlich bedeutungslos. Gesucht ist
daher eine Clusterzahl, bei der:

* die Objekte innerhalb der Cluster moglichst dhnlich sind.
* sich die Cluster untereinander moglichst deutlich unterscheiden.

Wie bereits gezeigt, ldsst sich die Gesamtstreuung der Daten zerlegen in:

mit T = Gesamtstreuung
W = Streuung innerhalb der Cluster fiir k Cluster
B\ = Streuung zwischen den Clustern fiir k Cluster

Mit wachsender Clusterzahl nimmt die Streuung innerhalb der Cluster ab, wahrend die Streuung
zwischen den Clustern zunimmt. Bei sehr vielen Clustern wird W sehr klein, jedoch verliert die
Clusterlosung dann ihre interpretierbare Bedeutung. Ziel ist es daher, einen Kompromiss zwischen
guter Trennung und sinnvoller Gruppierung zu finden.

1.4.2 Calinski-Harabasz-Kriterium

Das Calinski-Harabasz-Kriterium (auch Varianzquotient genannt) wurde 1974 von Calinski und
Harabasz vorgeschlagen und gehort zu den am hdufigsten eingesetzten Kriterien zur Bestimmung
der optimalen Clusterzahl.

Es ist definiert als:
Bk /(k—=1)

CH)= W,/ (n—k)

mit k = Anzahl der Cluster
n = Anzahl der Objekte
By = Streuung zwischen den Clustern
W) = Streuung innerhalb der Cluster

Das Kriterium ist somit ein normierter Quotient aus:

* mittlerer Streuung zwischen den Clustern pro Freiheitsgrad
* mittlerer Streuung innerhalb der Cluster pro Freiheitsgrad

Ein hoher CH-Wert bedeutet:

» grolle Trennung zwischen den Clustern
» geringe Streuung innerhalb der Cluster

Das Maximum von CH(k) wird als optimale Clusterzahl k" interpretiert:

k™ =arg max CH (k)
k
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Die benétigten Grollen lauten:

Gesamtmittelwert:
1 n
H= —sz'
nio
Clusterzentren:
1
H.=— Xi
nc x;eC,

Within-Cluster-Streuung;:

k
We=2 2 -l

c=1 xjeC,

Between-Cluster-Streuung:

k
By = ZHCHIUC _/UHZ

c=l1
Diese Zerlegung ist identisch zur Varianzanalyse und besitzt eine klare statistische Interpretation.

1.4.3 CH-Kriterium in OQM-Stat
OQM-Stat berechnet das CH-Kriterium fiir alle Clusterzahlen im Bereich:
koo <k<k

max

Der Anwender kann diesen Bereich explizit vorgeben. StandardméRig wird ein sinnvoller Bereich
gewdbhlt, der von der StichprobengrofSe abhéngt. Die CH-Werte werden tabellarisch ausgegeben und
zusitzlich grafisch dargestellt. Das Maximum markiert die empfohlene Clusterzahl. Optional kann
der Anwender das CH-Kriterium deaktivieren und die Clusterzahl manuell vorgeben. Wie jedes
streuungsbasierte Kriterium besitzt auch das CH-Kriterium Einschrankungen, insbesondere bei klei-
nen Stichprobenumfangen.

Problematisch wird das CH-Kriterium insbesondere bei:

sehr kleinen Stichproben (z. B. n < 30)

» geringer Dimensionalitdt

» schwacher oder kontinuierlicher Struktur

stark schiefen Verteilungen

* Vorliegen eines kontinuierlichen Gradienten anstelle echter Gruppen

In diesen Féllen kann es zu folgenden Effekten kommen:

* flache CH-Kurven ohne ausgeprédgtes Maximum
* instabile Maxima bei zufdlligen Schwankungen
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* {iberoptimistische Bewertung kleiner Clusterzahlen
¢ numerische Instabilititen bei sehr kleinen W

Beispiel: Berufsdatensatz

Beruf Einkommen Markenbewusstsein
Arzt 6861 21765
Ingenieur 5150 28245
Chemiker 5474 25179
Manager 7389 19048
Professor 5152 24608
CEO 12810 27611
Anwalt 7203 21536
Koch 4162 24823
Architekt 6779 22499
Forstwart 3204 7465
Physiker ETH 5335 17471
Lehrer 4311 14735
Bauarbeiter 3949 17921
Fischer 2132 8822
Servicemitarbeiter 3018 12201

Der Datensatz mit 15 Berufen, Einkommen und Markenbewusstsein stellt ein typisches Grenzbei-
spiel dar:

* sehr kleine Stichprobe

* nur zwei Dimensionen

* eher kontinuierlicher soziotkonomischer Gradient
* keine natiirliche Gruppierung

In solchen Fillen existieren keine echten Cluster im statistischen Sinne. Das CH-Kriterium liefert
zwar mathematische Werte, diese besitzen jedoch keine inhaltlich belastbare Interpretation. Die
Clusteranalyse erzeugt hier lediglich eine kiinstliche Segmentierung eines kontinuierlichen Merk-
malsraums.

Bei kleinen Datensatzen sollte das CH-Kriterium daher nur unterstiitzend verwendet werden. In die-
sen Féllen ist eine inhaltliche Interpretation zwingend erforderlich. Empfohlen wird:

* Begrenzung des Suchbereichs auf wenige Cluster (z. B. k = 2 oder k = 3)
» grafische Analyse mittels Scatterplots

* Beurteilung der Trennschérfe

* Plausibilitatspriifung anhand fachlicher Kriterien

Die Clusteranalyse wird hier zu einem explorativen Hilfsmittel und nicht zu einem automatischen
Klassifikationswerkzeug.

1.4.4 Einordnung des CH-Kriteriums

In der Literatur wurden eine Vielzahl statistischer Kriterien entwickelt, die unter dem Begriff der
sogenannten Stopping Rules zusammengefasst werden. Diese liefern statistische und damit weitge-
hend objektive Anhaltspunkte zur Bestimmung der optimalen Clusterzahl bei Anwendung hierarchi-
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scher Clusterverfahren. Ziel dieser Stopping Rules ist es, aus der Fusionshierarchie jene Clusterzahl
zu bestimmen, die der ,,wahren“ Gruppenstruktur der Daten méglichst nahekommt.

Im Rahmen einer umfangreichen Simulationsstudie untersuchten Milligan und Cooper (1985)
insgesamt 30 solcher Stopping Rules. Die Autoren generierten Datensdtze mit unterschiedlich
trennscharfen Clusterstrukturen (mit 2 bis 5 Clustern) und testeten anschliefend, inwieweit ver-
schiedene hierarchische Verfahren — darunter Single-Linkage, Complete-Linkage, Average-Linkage
und Ward — in der Lage waren, die vorgegebene wahre Gruppenzahl korrekt zu identifizieren.

Die Auswertung zeigte, dass das Kriterium von Calinski und Harabasz unter allen untersuchten
Stopping Rules die beste Leistungsfahigkeit aufwies. In {iber 90 % der untersuchten Falle konnte
mit dem Calinski-Harabasz-Kriterium die wahre Clusterstruktur korrekt erkannt werden.

Damit besitzt das CH-Kriterium eine hervorragende empirische Absicherung und kann als eines der
leistungsfdhigsten und zuverlédssigsten Verfahren zur Bestimmung der optimalen Clusterzahl bei
hierarchischen Clusteranalysen angesehen werden.Das Calinski-Harabasz-Kriterium ist ein leis-
tungsfahiges Werkzeug zur automatischen Bestimmung der Clusterzahl bei ausreichend grofen und
strukturierten Datensdtzen. In industriellen Anwendungen mit mehreren hundert oder tausend Beob-
achtungen liefert es in der Regel sehr stabile und reproduzierbare Ergebnisse.

Bei kleinen Stichproben ersetzt es jedoch nicht die fachliche Interpretation und sollte stets im
Zusammenhang mit grafischen Darstellungen und inhaltlicher Expertise betrachtet werden.

1.5 Statistische AusreiBererkennung mit Mahalanobis-Distanz

In multivariaten Datensdtzen treten hdufig Beobachtungen auf, die nicht zur eigentlichen Daten-
struktur gehoren. Solche Ausreifler kdnnen unterschiedliche Ursachen haben:

e Messfehler

* FEingabefehler

* fehlerhafte Sensorik

* besondere Prozesszustinde
¢ echte Sonderfille

Ausreiler konnen die Clusterbildung erheblich verzerren und fiihren haufig zu instabilen oder ver-
falschten Clusterlosungen. Eine statistisch fundierte Ausreillererkennung ist daher ein zentraler
Bestandteil jeder robusten Clusteranalyse.

In univariaten Analysen werden Ausreifler meist {iber z-Werte oder Boxplot-Kriterien identifiziert.
Diese Methoden beriicksichtigen jedoch nur eine einzelne Variable.

In multivariaten Datensédtzen kénnen jedoch Beobachtungen auftreten, die in keiner einzelnen Vari-
able auffillig sind, aber im Merkmalsraum dennoch weit von der Datenwolke entfernt liegen. Sol-
che Punkte werden als multivariate Ausreiller bezeichnet.

Zur Identifikation multivariater Ausreiller ist daher ein DistanzmaRl erforderlich, das die gesamte
Kovarianzstruktur der Daten beriicksichtigt. Das geeignete Distanzmal} zur Identifikation multivari-
ater Ausreifer ist die Mahalanobis-Distanz:
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MD?(x) = (x = ) =7 (x = p)

mit x = Beobachtungsvektor
u = Mittelwertvektor
Y. = Kovarianzmatrix

Die Mahalanobis-Distanz misst die normierte Entfernung eines Punktes vom Zentrum der Daten-
wolke. Unter der Annahme einer multivariaten Normalverteilung gilt:

MD? =y,

mit p = Anzahl der Dimensionen.
Damit lasst sich ein objektiver statistischer AusreilSertest formulieren:

Ein Punkt gilt als Ausreiler, wenn
2 2
MD~* > Xa.p
wobei a = Konfidenzniveau (z. B. 0.99)

Wie bereits gezeigt, kann die Mahalanobis-Distanz iiber eine Whitening-Transformation auf eine
euklidische Norm im transformierten Raum zuriickgefiihrt werden:

z=L"(x—p)mit Y =LL"
Dann gilt:
MD? = ||}

Im whitened space liegen die Daten kugelformig verteilt um den Ursprung. Ausrei8er erscheinen als
Punkte mit besonders grollem Abstand zum Zentrum.

1.5.1 AusreiBerbehandlung in OQM-Stat

OQM-Stat verwendet standardmédfig eine Mahalanobis-basierte Ausreilererkennung mit Chi?-
Schwellenwert. Das Verfahren umfasst:

* Berechnung der Kovarianzmatrix

* Whitening-Transformation

* Berechnung der Mahalanobis-Distanzen
* Vergleich mit Chi?-Quantil

* Markierung statistischer Ausreifler

Ausreiler werden bei der Clusterbildung ausgeschlossen, kénnen jedoch weiterhin grafisch darge-
stellt und in der Analyse ausgewertet werden.
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Die Trennung von reguldren Beobachtungen und Ausreillern ist entscheidend fiir die Qualitét der
Clusterlosung:

* Ausreiller verzerren Zentren

* sie beeinflussen die Distanzmatrix

* sie fithren zu instabilen Fusionen

* sie konnen kiinstliche Cluster erzeugen

Durch die statistische Ausreiererkennung wird sichergestellt, dass die Clusteranalyse auf einer sta-
bilen, reprdsentativen Datenbasis erfolgt. Die Chi2-basierte Ausreillererkennung setzt voraus:

¢ annihernde Multinormalitat
 ausreichende StichprobengréfSe
¢ stabile Kovarianzmatrix

Bei sehr kleinen Stichproben kann die Kovarianzschdtzung instabil werden. In diesen Fillen sollte
der Ausreilertest nur als Orientierungshilfe verwendet und stets grafisch tiberpriift werden.

1.6 Refinement der Clusterzuordnung mittels k-Means-Verfahren

Der Ward-Algorithmus liefert eine hierarchische Struktur der Daten und erzeugt kompakte, gut
interpretierbare Cluster. Das Ergebnis basiert jedoch auf einer schrittweisen Fusion und ist damit
nicht direkt auf eine globale Optimierung der Clusterzuordnung ausgerichtet.

Zur weiteren Verfeinerung der Gruppenzugehorigkeit kann daher ein partitionierendes Verfahren
eingesetzt werden, das die Clusterzentren iterativ optimiert. Hierzu hat sich insbesondere das k-
Means- Verfahren bewdahrt.

In OQM-Stat wird das k-Means-Verfahren optional als Refinement-Stufe eingesetzt, wobei die vom
Ward-Algorithmus ermittelten Clusterzentren als Startwerte verwendet werden.

1.6.1 Grundprinzip des k-Means-Verfahrens

Das k-Means-Verfahren ist ein partitionierendes Clustering-Verfahren, bei dem die Anzahl der Clus-
ter k vorab festgelegt wird. Ziel ist es, die Objekte so auf die Cluster zu verteilen, dass die Summe
der quadratischen Abstdnde zu den jeweiligen Clusterzentren minimal wird. Gegeben sei eine
Menge von Beobachtungen

P
X|5Xy,...,X, € R

Gesucht ist eine Partition in k Cluster Cy, ..., C, mit Zentren ps, ..., Uk, sodass folgende Zielfunktion
minimiert wird:

k
SSE=Y 3 |-

.
c=1 x;eC,
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Diese Grofe wird als Within-Cluster-Streuquadratsumme bezeichnet. Das klassische k-Means-Ver-
fahren ein Iteratives Optimierungsverfahren besteht aus den folgenden Schritten:

Initialisierung der Clusterzentren pi, ..., t«

* Zuordnung jedes Objekts zum ndchstgelegenen Zentrum

Neuberechnung der Clusterzentren als Mittelwerte der zugeordneten Punkte
Wiederholung der Schritte 2 und 3 bis zur Konvergenz

Der Algorithmus konvergiert zu einem lokalen Minimum der Zielfunktion.
1.6.2 Initialisierung durch Ward-Zentren

Ein bekanntes Problem des k-Means-Verfahrens besteht in seiner Abhdngigkeit von der Initialisie-
rung. Ungiinstige Startwerte konnen zu schlechten lokalen Minima fiihren. Um dieses Problem zu
vermeiden, verwendet OQM-Stat die vom Ward-Algorithmus ermittelten Clusterzentren als Initiali-
sierung. Diese Vorgehensweise besitzt mehrere Vorteile:

» sehr stabile Startwerte

* keine zuféllige Initialisierung

* reproduzierbare Ergebnisse

* schnelle Konvergenz

* globale Struktur bereits beriicksichtigt

Damit verbindet sich die hierarchische Struktur des Ward-Verfahrens mit der globalen Optimierung
des k-Means-Verfahrens. Im euklidischen Modus basiert die Zuordnung auf der euklidischen Distanz:

di (% p.) =[x =]
Im Mahalanobis-Modus erfolgt die Zuordnung im whitened space:
2= s
dy (x.p1.) =]z =]

Damit bleibt die kovarianzgewichtete Geometrie auch im k-Means-Refinement vollstdndig erhalten.
Der k-Means-Algorithmus wird iteriert, bis sich die Zuordnung der Objekte nicht mehr &ndert oder
der Riickgang der Zielfunktion unter eine vorgegebene Schwelle féllt.

In OQM-Stat wird zusdtzlich eine maximale Iterationszahl vorgegeben, um eine garantierte Ter-
minierung sicherzustellen.

1.6.3 Ergebnis des Refinements

Das Ergebnis des k-Means-Refinements ist eine stabile Partition der Daten mit:

* finalen Clusterzentren
* finaler Gruppenzuordnung (NeuCluster)
* minimaler Within-Cluster-Streuung
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Diese Partition bildet die Grundlage fiir:

 grafische Darstellung

* Konfidenzellipsen

* statistische Tests

* weitere multivariate Analysen

Das k-Means-Refinement ist kein Ersatz fiir den Ward-Algorithmus, sondern eine sinnvolle Ergédn-
zung. Wiahrend Ward die globale Struktur der Daten erfasst, sorgt k-Means fiir eine lokale Optimie-
rung der Gruppenzuordnung. In Kombination entsteht ein sehr leistungsfahiges Verfahren, das
sowohl explorativ als auch statistisch fundiert ist. Diese Kombination aus hierarchischer und partiti-
onierender Clusteranalyse wird in der Literatur haufig als Best Practice empfohlen.

Auch das k-Means-Verfahren besitzt Einschrankungen:

* es setzt konvexe Clusterformen voraus

* esist empfindlich gegeniiber Ausreillern

* es minimiert nur eine quadratische Zielfunktion
* es liefert nur lokale Optima

Durch die vorgeschaltete Ward-Analyse und die statistische Ausreillererkennung werden diese Ein-
schrankungen in OQM-Stat jedoch weitgehend kompensiert.

1.7 Grafische Analyse der Clusterstruktur

Die numerische Bestimmung von Clusterstrukturen liefert eine objektive und reproduzierbare Grup-
penzuordnung. Fiir die Interpretation der Ergebnisse ist jedoch eine grafische Darstellung unver-
zichtbar. Erst durch geeignete Visualisierungen wird die geometrische Struktur der Daten, die Lage
der Clusterzentren, die Streuung innerhalb der Cluster sowie mogliche Uberlappungen sichtbar. Die
grafische Analyse erfiillt dabei mehrere Funktionen:

* Plausibilitdtskontrolle der numerischen Clusterlosung
* visuelle Beurteilung der Trennschérfe

* Identifikation moglicher Grenzfélle

* Erkennung verbliebener AusreilSer

* Interpretation der Clustergeometrie

In OQM-Stat werden hierfiir interaktive 2D-Streudiagramme mit Zentren, AusreiSern und Konfi-
denzellipsen bereitgestellt.

1.7.1 Streudiagramme im Merkmalsraum

Fiir jede Variablenkombination xi, xj kénnen zweidimensionale Streudiagramme erzeugt werden.
Jeder Punkt reprdsentiert eine Beobachtung, farblich kodiert nach Clusterzugehoérigkeit. Die Streu-
diagramme ermoglichen eine direkte visuelle Beurteilung:

* der Clusterlage im Merkmalsraum
* der internen Streuung

der Uberlappung zwischen Clustern
der relativen Clustergrofie
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Damit wird sichtbar, ob die numerische Clusterlésung geometrisch sinnvoll ist. Zusétzlich zu den
Einzelpunkten werden die Clusterzentren in den Streudiagrammen dargestellt. Die Zentren entspre-
chen den Mittelwertvektoren der Cluster:

1
He=— Z X;
ne x;eC,
Die Darstellung der Zentren erlaubt:

* eine schnelle Orientierung im Merkmalsraum
* den Vergleich der relativen Lage der Cluster
* die Beurteilung der Trennung entlang einzelner Dimensionen

Die Zentren dienen zudem als Referenzpunkte fiir die Konfidenzellipsen.
1.7.2 Konfidenzellipsen der Cluster

Zur Visualisierung der Streuung innerhalb eines Clusters werden Konfidenzellipsen dargestellt.
Diese basieren auf der zweidimensionalen Kovarianzmatrix des jeweiligen Clusters. Fiir ein Cluster
mit Mittelwert 4 und Kovarianzmatrix ¥ gilt fiir die Ellipse:

(x—u) = (x—p)=y2,

Dabei ist a das gewdhlte Konfidenzniveau (z. B. 95 %, 99 % oder 99.5 %). Alle Punkte innerhalb
der Ellipse gehéren mit Wahrscheinlichkeit @ zur multivariaten Normalverteilung des Clusters. Die
Ellipsen liefern wichtige geometrische Informationen:

Grole der Ellipse — Streuung des Clusters
* Orientierung — Korrelation der Variablen
Lage — Clusterzentrum

Uberlappung — Trennschérfe der Cluster

Stark tiberlappende Ellipsen deuten auf schlecht trennbare Cluster hin, wahrend klar getrennte Ellipsen
eine stabile Clusterstruktur anzeigen.

Wird die Clusteranalyse mit Mahalanobis-Distanzen durchgefiihrt, so erfolgt die eigentliche Clus-
terbildung im sogenannten whitened space. In diesem Raum sind alle Variablen standardisiert und
entkorreliert, sodass die euklidische Distanz der Mahalanobis-Distanz im Originalraum entspricht.
Die Whitening-Transformation lautet:

z=L" (x — ,u)
mit
»=LI"

wobei p der Mittelwertvektor,
Y. die Kovarianzmatrix und
L die untere Cholesky-Zerlegung von X ist.
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Die Clusterbildung, die Distanzberechnung sowie die Ausreiererkennung erfolgen vollstandig im
z-Raum. Fiir die grafische Darstellung der Ergebnisse ist jedoch der Originalraum entscheidend.
Nur dort besitzen die Achsen eine inhaltliche Bedeutung (z. B. Lange, Breite, Randabstand etc.).
Daher miissen fiir die Visualisierung:

* die Clusterzentren
* die Konfidenzellipsen
* die Distanzgeometrie

aus dem Whitening-Raum wieder in den Originalraum zuriicktransformiert werden. Die Riicktrans-
formation erfolgt iiber:

x=u+Lz

Damit lassen sich:

* Zentren aus dem z-Raum korrekt in den Originalraum projizieren
» Ellipsenachsen geometrisch korrekt darstellen
* Clustergeometrien realitdtsgetreu abbilden

Ohne diese Riicktransformation wéren die dargestellten Ellipsen und Zentren zwar mathematisch
korrekt, aber inhaltlich nicht interpretierbar, da sie sich in einem kiinstlichen, dimensionslosen
Koordinatensystem befinden wiirden. Erst durch die Riicktransformation erhélt man:

* Ellipsen in den physikalischen Einheiten der Messgrollen
* korrekte Streuungsgeometrie im Merkmalsraum

* interpretierbare Achsen

 fachlich nachvollziehbare Visualisierung

1.7.3 Darstellung der Ausrei3er

Ausreiller werden in den Streudiagrammen gesondert dargestellt. Sie erscheinen typischerweise
aullerhalb der Konfidenzellipsen und besitzen grofle Mahalanobis-Distanzen. Die grafische Darstel-
lung erlaubt:

* visuelle Bestdtigung der statistischen Ausreillererkennung
* Beurteilung moglicher Messfehler
* Identifikation besonderer Prozesszustande

Ausreiller werden bei der Clusterbildung ausgeschlossen, bleiben jedoch fiir die Analyse sichtbar.
Nicht jeder Datensatz besitzt eine natiirliche Clusterstruktur. Insbesondere bei kleinen Stichproben
oder kontinuierlichen Gradienten kénnen Streudiagramme dennoch wertvolle Informationen liefern.

In solchen Fillen zeigen die Streudiagramme héaufig:

* kontinuierliche Trends
* schiefe Verteilungen

* Streuungsstrukturen

* Rangordnungen
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Die grafische Analyse dient dann primér der explorativen Datenanalyse und nicht der Bestdtigung
einer Clusterlésung.

1.7.4 Grafische Analyse in OQM-Stat
OQM-Stat stellt ein interaktives Plot-Modul zur Verfiigung, das folgende Elemente kombiniert:

» Streupunkte nach Clusterzugehorigkeit

* Clusterzentren

* statistische Ausreiller

» Konfidenzellipsen mit frei wahlbarem Konfidenzniveau
* Achsenbeschriftungen und Titel

* Legende

OQM-Stat fiihrt die Riicktransformation automatisch durch:

* Clusterzentren werden aus dem Whitening-Raum zurticktransformiert
» Konfidenzellipsen werden geometrisch korrekt im Originalraum konstruiert
* Streudiagramme werden stets im Originalraum dargestellt

Der Anwender arbeitet somit immer mit interpretierbaren Grafiken, unabhédngig davon, ob Euklidi-
sche oder Mahalanobis-Distanzen verwendet werden. Die Grafiken werden direkt im Excel-Arbeits-
blatt erzeugt und konnen fiir Berichte, Prasentationen und Dokumentationen verwendet werden.

Die grafische Analyse ist ein unverzichtbarer Bestandteil jeder Clusteranalyse. Sie erginzt die
numerischen Kriterien und ermdglicht eine inhaltliche Interpretation der Ergebnisse.

Nur durch die Kombination aus:

* numerischer Optimierung
* statistischer Validierung
 grafischer Plausibilitdtspriifung

entsteht eine belastbare und fachlich fundierte Clusterlsung.

1.8 Statistische Validierung der Clusterlésung

Die eigentliche Clusterbildung stellt nur den ersten Schritt einer multivariaten Analyse dar. Eine
Clusterlosung ist zundchst lediglich eine hypothesengenerierende Struktur. Erst durch eine anschlie-
Bende statistische Validierung lasst sich beurteilen, ob die gefundenen Gruppen tatsdchlich signi-
fikant voneinander verschieden sind oder ob sie lediglich zuféllige Artefakte der Datenstruktur dar-
stellen. Eine valide Clusteranalyse muss daher folgende Fragen beantworten:

Sind die Cluster statistisch signifikant verschieden?
Lassen sich die Gruppen multivariat voneinander trennen?
Ist die gefundene Clusterstruktur stabil?

* Sind die Gruppen geometrisch kompakt und klar separiert?

OQM-Stat integriert hierzu eine vollstdndige statistische Validierung auf Basis multivariater Test-
verfahren.
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Hierarchische Clusterverfahren wie der Ward-Algorithmus liefern stets eine Partition — unabhingig
davon, ob tatsdchlich eine natiirliche Gruppenstruktur existiert oder nicht. Insbesondere bei kleinen
Stichproben, schwach separierten Gruppen oder hoch korrelierten Variablen besteht die Gefahr, dass
scheinbar plausible Cluster rein zufillig entstehen. Daher ist eine statistische Uberpriifung der Clus-
terlésung zwingend erforderlich. Eine valide Clusterlosung sollte folgende Eigenschaften besitzen:

* hohe Intra-Cluster-Homogenitét

* hohe Inter-Cluster-Heterogenitat

* signifikante multivariate Trennung
* stabile Zentren

Nur wenn diese Kriterien erfiillt sind, kann von einer belastbaren Klassifikation gesprochen werden.
1.8.1 Multivariate Trennung: Hotelling-T*Test (k = 2)

Liegt eine Zweiklassenlosung vor, so bietet sich der Hotelling-T?-Test als multivariates Analogon
zum t-Test an. Der Test {iberpriift die Hypothese:

Ho: =i
gegen
Hyopy # 1y

wobei @; und w, die multivariaten Mittelwertvektoren der beiden Cluster darstellen. Die Teststatistik
lautet:

e 5

mit der gepoolten Kovarianzmatrix

_ (n —1)S; +(m, 1),

SP

Die T2-Statistik ldsst sich in eine F-Verteilung tiberfiihren:

e n1+n2—p—1T2
p(nl+n2—2)

mit Freiheitsgraden:
dfy=p, dfy=n+n,—p-1

Ein signifikanter p-Wert zeigt, dass sich die beiden Cluster multivariat signifikant unterscheiden. Die
Cluster sind dann statistisch eindeutig trennbar. Gerade bei industriellen Klassifikationsproblemen (z.
B. Gut-/Schlecht-Teile, Original/Fédlschung, IO/NIO) ist dieser Test von zentraler Bedeutung.
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1.8.2 Mehrklassenfall: Wilks-Lambda-Test (MANOVA)

Liegt eine Clusterlésung mit mehr als zwei Gruppen vor, so wird eine multivariate Varianzanalyse
(MANOVA) durchgefiihrt. Als Teststatistik dient das Wilks-Lambda-Kriterium:

_ &
\E+Hy

wobei E die Fehlervarianzmatrix (within-clusters) und
H die Hypothesenvarianzmatrix (between-clusters) bezeichnet.

Kleine Werte von A sprechen fiir eine starke Trennung der Gruppen. Die Teststatistik wird iiber eine
Chi-Quadrat-Approximation ausgewertet:

;(2:—(N—1—p;g)ln(/\)

mit Freiheitsgraden:
df =p(g-1)

Ein signifikanter Wilks-Test zeigt, dass mindestens zwei Cluster multivariat signifikant voneinander
verschieden sind. Die Clusterldsung ist damit statistisch abgesichert. Neben der rein statistischen
Trennung ist auch die geometrische Struktur der Cluster von Bedeutung. OQM-Stat bewertet
hierzu:

* Intra-Cluster-Streuung (Within-SSE)
* Inter-Cluster-Streuung (Between-SSE)
* Distanz der Objekte zu ihren Zentren
¢ Uberlappung der Konfidenzellipsen

Eine gute Clusterlosung zeichnet sich aus durch:

* kleine Within-SSE

* grolle Between-SSE
kompakte Ellipsen
geringe Uberlappung

Diese Grofen sind direkt interpretierbar und lassen sich grafisch nachvollziehen.
1.8.3 Stabilitét der Clusterlésung durch k-Means-Refinement

Der Ward-Algorithmus liefert eine hierarchische Startpartition. Diese wird in OQM-Stat optional
durch ein partitionierendes k-Means-Verfahren verfeinert. Dabei werden:

* die Ward-Zentren als Startwerte verwendet
* iterative Reallokationen durchgefiihrt
* die Summe der quadratischen Abweichungen minimiert
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Eine stabile Clusterl6sung zeigt dabei:

* nur wenige Reallokationen
* schnelle Konvergenz
» geringe Reduktion der SSE

Dies spricht fiir eine robuste natiirliche Gruppenstruktur. Bei sehr kleinen Datensédtzen (z. B. n < 20)
ist die Aussagekraft multivariater Testverfahren eingeschrankt. Griinde hierfiir sind:

instabile Kovarianzschédtzungen

» geringe Freiheitsgrade

* reduzierte Teststdrke

* hohe Sensitivitdt gegeniiber AusreilSern

Dennoch kénnen selbst bei kleinen Datensdtzen hochsignifikante Trennungen auftreten, sofern die
Gruppen stark separiert sind. Ein signifikanter Hotelling-T2-Test bei kleinen Stichproben ist daher
durchaus méglich, wenn:

* die Mittelwerte stark differieren
* die Streuungen klein sind
* die Gruppen geometrisch klar getrennt liegen

In solchen Fillen liefert der Test trotz kleiner Fallzahlen valide Evidenz fiir eine echte Gruppen-
struktur. Die statistische Validierung ist ein unverzichtbarer Bestandteil einer seriésen Clusterana-
lyse. Erst durch multivariate Tests ldsst sich beurteilen, ob die gefundenen Cluster tatsdchlich reale
Objektklassen reprédsentieren. OQM-Stat stellt hierzu ein vollstdndiges Validierungssystem bereit:

Hotelling-T?-Test fiir Zweiklassenl6sungen
Wilks-Lambda-Test fiir Mehrklassenlosungen
* geometrische Clusteranalyse
k-Means-Stabilitatspriifung

Damit wird aus einer explorativen Clusteranalyse ein statistisch abgesichertes Klassifikations-
modell.

1.9 Industrielle Interpretation der Clusterlésung

Die Clusteranalyse ist ein exploratives, strukturbildendes Verfahren. Thr priméres Ziel besteht darin,
aus einer multivariaten Datenmatrix natiirliche Gruppen zu identifizieren, ohne dass eine Klassen-
zugehorigkeit vorab bekannt ist. In industriellen Anwendungen stellt die Clusteranalyse damit hdu-
fig den ersten Schritt einer systematischen Klassifikationskette dar.

Erst durch die anschliefende Interpretation und Modellbildung wird aus einer Clusterlésung ein
praxistaugliches Identifikationssystem. In technischen Anwendungen lautet die eigentliche Frage-
stellung nicht:

»Welche Gruppen existieren in den Daten?“
sondern:

»Zu welcher bekannten Klasse gehort ein neues Objekt?*
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Typische industrielle Klassifikationsprobleme sind:

* Gutteil / Schlechtteil

* Original / Fédlschung

¢ Konform / Nicht-konform

* Freigabe / Sperrung

* Prozess stabil / Prozess instabil

Die Clusteranalyse liefert hierzu die notwendige Strukturinformation:

* Anzahl der Objektklassen

* geometrische Trennung

* relevante Merkmalskombinationen
* Streuungsstruktur

e Ausreilercharakteristik

Damit bildet sie die Grundlage fiir den Aufbau eines deterministischen Klassifikationsmodells. Die
Clusteranalyse bildet den Einstieg in die multivariate Klassifikation. Erst durch die anschliefende
Modellbildung entsteht ein industriell nutzbares Identifikationssystem. Die Kombination aus:

* Ward-Clusteranalyse

* Calinski-Harabasz-Stopping-Rule
* Hotelling-T?-Validierung

* Wilks-Lambda-Test

* Mahalanobis-Distanzen

stellt ein leistungsfahiges, statistisch abgesichertes Klassifikationsframework dar. In den folgenden
Kapiteln wird gezeigt, wie diese Methodik auf reale Produktionsprozesse iibertragen werden kann
— von der Datenerfassung iiber die Modellbildung bis zur Online-Entscheidung.

1.10 Beispiel: Markenbewusstsein

Dies ist ein Lehrbeispiel; daher wurde der Datensatz bewusst klein gehalten. Dennoch lésst sich
anschaulich demonstrieren, wie die Clusteranalyse in OQM-Stat arbeitet. Es werden zwei Cluster
erwartet, die sich inhaltlich wie folgt charakterisieren lassen:

Ein Cluster ist durch hohes Einkommen und hohes Markenbewusstsein gekennzeichnet, wahrend
der andere Cluster niedriges Einkommen mit geringem Markenbewusstsein kombiniert. Aufgrund
der kleinen Stichprobe sind keine stabilen und belastbaren Ergebnisse zu erwarten, was hier ausdrti-
cklich demonstriert werden soll. Gleichzeitig sollen alternative Losungsansdtze aufgezeigt werden,
mit denen sich trotz dieser Einschrankungen einfachere und besser interpretierbare Ergebnisse
erzielen lassen.

1.10.1 Der Datensatz zum Markenbewusstsein
Der Datensatz stammt aus einem im Internet veroffentlichten Artikel:

Clusteranalyse — Methodenberatung UZH — Universitdt Ziirich
(https://www.methodenberatung.uzh.ch » cluster).
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Uber die Entstehung der Variablen Einkommen und Markenbewusstsein werden keine niheren
Angaben gemacht. Es ist nicht bekannt, ob es sich um eine Zufallsstichprobe oder um einen kon-
struierten Beispieldatensatz handelt. Ebenso bleibt unklar, wie das Markenbewusstsein konkret
erhoben bzw. gemessen wurde.

Fiir die nachfolgende Analyse und Beurteilung wird daher angenommen, dass es sich um einen rea-
len Datensatz handelt.

Beruf Einkommen Markenbewusstsein
Arzt 6861 21765
Ingenieur 5150 28245
Chemiker 5474 25179
Manager 7389 19048
Professor 5152 24608
CEO 12810 27611
Anwalt 7203 21536
Koch 4162 24823
Architekt 6779 22499
Forstwart 3204 7465
Physiker ETH 5335 17471
Lehrer 4311 14735
Bauarbeiter 3949 17921
Fischer 2132 8822
Servicemitarbeiter 3018 12201

1.10.2 Eingabemenii von OQM-Stat
Clus.:e’ing mitte-ls Ward-AIg-m'tﬂus ) X

IV Erste Zeile enthalt Uberschriften M Erste Spaltele ist D KUV GRS NINE

copyright 2017-2026
J E. Spenhoff
ogm@espenhoff.de

Datenmatrix (nxp): | Clusterdaten!$R$1:$T$16

Zeigt n, p: | n=15, p=2

Distanzmal}

o Numerischer Stabilitéts-Eps
' Euklidisch (Ward/SSE)

(Diagonal-Jitter)

" Mahalanobis (iiber Whitening mit Summe) |

Berechnung der Distanz bei Mahalanobis

&
~

Max. Cluster (CH-Suche): | 2 I—EStopping Rule: Calinski{Harabaszé

Min. Cluster: 2 I

¥ Ausreifer erkennen/entfernen
Ausreiferbehandlung
* Robust/MD2 via chiz-Schwelle alpha (z. B. 0.99): 0.99

¥ Dendrogramm ausgeben

¥ Startwerte/Startzuordnung fiir partitionierendes Verfahren ausgeben

¥ Partitionierung mit K-Mean zur Verbesserung (nach Ward)

max. Iterationen 100 Toleranz 0.0000001

Starten ‘ Abbrechen ‘
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Die Daten werden standardmdRig mit Kopfzeile (Namen der Variablen) und ID-Spalte (Bezeich-
nung der Objekte bzw. Beobachtungen) eingelesen. Dies ist sehr sinnvoll, da sowohl die Variablen-
namen als auch die Objektbezeichnungen in der Ergebnisausgabe weiterverwendet werden. Nach-
dem der Eingabebereich definiert wurde, werden zur Kontrolle

* n = Anzahl der Objekte und
* p = Anzahl der Variablen

ausgegeben.

Im néchsten Schritt erfolgt die Auswahl des Distanzmafles. Wir wéhlen zundchst die euklidische
Distanz, werden jedoch spéter auch zeigen, welchen Einfluss die Mahalanobis-Distanz auf die
Ergebnisse hat.

Eine besonders wichtige Option ist die Suche nach der optimalen Clusterzahl k*. Hierzu wird die
Calinski-Harabasz-Stopping-Rule verwendet, die als eines der besten Kriterien zur Bestimmung
der Clusterzahl gilt.

Fiir diesen Datensatz wird jedoch kein eindeutiges k™ gefunden, da fiir keine Clusteranzahl ein
Maximum des CH-Kriteriums auftritt. Dies zeigt deutlich, dass die geringe Groe des Datensatzes
keine statistisch signifikante Bestimmung der optimalen Clusterzahl erlaubt. Aus diesem Grund
muss der Suchbereich auf

min. Cluster = 2 und
max. Cluster =2

eingeschrankt werden. Zusétzlich wird untersucht, was geschieht, wenn max. Cluster = 3 gesetzt wird.
Da die automatische Bestimmung der Clusterzahl nicht erfolgreich ist, muss die ,,Stopping Rule“
deaktiviert werden, da andernfalls unsinnige oder instabile Ergebnisse entstehen kdnnen.

Der nédchste Schritt betrifft die Definition eines Ausreilertests, mit dem mogliche Ausreiller identi-
fiziert werden. Es handelt sich hierbei um einen einfachen Test, dessen Sensitivitit iiber die Wahr-
scheinlichkeit ¢ eingestellt wird. Kleinere Werte von a erhthen die Sensitivitdt, groere Werte ver-
ringern sie. Geeignete Werte fiir a sind beispielsweise: 0,9; 0,95; 0,975; 0,99; 0,995 und 0,999. Die
voreingestellten Standardwerte kdnnen fiir eine erste Analyse problemlos iibernommen werden.

Der letzte Schritt betrifft die Ausgabe der Ergebnisse sowie die Verbesserung der Zuordnung der
Objekte mithilfe des k-Means-Algorithmus. Alle entsprechenden Optionen sollten aktiviert wer-
den, da andernfalls das wichtige Scatterplot nur eingeschrankt dargestellt werden kann. Nach diesen
Einstellungen wird die Clusteranalyse gestartet.
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1.10.3 Das Dendrogramm und andere Analyseergebnisse

Dendrogramm (Ward)

451834 -

IS

S

I
361467+
271100
180733 4
903668 -

0.00 I I I j:— | j:_

Die Analyse erzeugt ein Dendrogramm, das auf das Vorhandensein von zwei Clustern schlielSen 1dsst.
Dabei ist jedoch zu beriicksichtigen, dass dieses Ergebnis durch die Einstellung max. Cluster = 2
erzwungen wurde. Die eingelesene Datenmatrix wird erneut ausgegeben und um mehrere Ergebnis-
spalten erganzt:

* die Spalte Cluster, welche die urspriingliche Zuordnung durch den Ward-Algorithmus enthlt,

* die Spalte Ausreifer, in der erkannte AusreilSer dokumentiert werden,

* die Spalte NeuCluster, welche die verdnderte Zuordnung der Objekte nach der Partitionierung mit
dem k-Means-Algorithmus anzeigt,

* sowie die Spalte DistanzmalRle, in der fiir jedes Objekt die euklidische Distanz geméal der gewdhl-
ten Definition ausgegeben wird.

Urdaten Zuordnung

Objekt Einkommen Markenbewusstsein Cluster Ausreifer NeuCluster Distanzmale
Arzt 6861 21765 2 0 2| 1130.345994
Ingenieur 5150 28245 2 0 2| 5592.217967
Chemiker 5474 25179 2 0 2| 2556.385085
Manager 7389 19048 2 0 2| 3875.07175
Professor 5152 24608 2 0 2| 2196.960312
CEO 12810 27611 2 0 2| 8029.618488
Anwalt 7203 21536 2 0 2| 1496.991642
Koch 4162 24823 2 0 2| 3013.409059
Architekt 6779 22499 2 0 2| 488.5643837
Forstwart 3204 7465 1 0 1] 3340.963278
Physiker ETH 5335 17471 2 0 2| 5423.585519
Lehrer 4311 14735 1 0 1] 4092.610185
Bauarbeiter 3949 17921 2 0 2| 5446.859168
Fischer 2132 8822 1 0 1| 2237.17168
Servicemitarbeiter 3018 12201 1 0 1| 1403.103925

Wir sehen Cluster 1 mit den Berufen Forstwart, Lehrer, Fischer und Servicemitarbeiter und im
Cluster 2 befinden sich alle elf anderen Berufe. Auch der CEO mit seinem sehr hohen Gehalt gehort
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zu dieser Gruppe. Keines der 15 Objekte wurde als Ausreiller erkannt. Die Partitionierung ergab
keine Verdnderung.

Clustering mittels Ward- (und k-Mean-Algorithmus)
Bedingungen fiir Ward-Algorithmus

DistanzmalR:| Euklidisch
Ausreifertest;| MD?Chi?

alpha: 0.99
Cluster-Suche (CH): 2.2

k*(optimal): 2

Anzahl Variabler p: 2

n (original): 15

n (ohne Outlier): 15

Rechenzeit (s): 0.016

Partitionierung mit k-Means nach Ward-Resultaten

max. lterationen: 100
Toleranz:|  0.0000001
lterationen: 1
Umklassifikationen: 0

SSE (Start):| 228932276.8
SSE (Ende):| 2269322768

Rechts neben der Matrix werden weitere Ergebnisse ausgegeben: Im oberen Block der Ausgabe
befinden sich die Bedingungen und Ergebnisse des Ward-Algorithmus, im zweiten Block die Bedin-
gungen und Ergebnisse der k-Means-Partitionierung. Die SSE-Werte (Sum of Squared Errors)
stellen dabei das zentrale Ergebnis der Clusteranalyse dar, da sie den zu minimierenden Zielwert
sowohl fiir das Ward-Verfahren als auch fiir den k-Means-Algorithmus repréasentieren.

Im unteren Block werden — bei Verwendung der Mahalanobis-Distanzen — zusdtzlich die Ergebnisse
statistischer Tests ausgegeben:

* der Hotelling-T?-Test fiir zwei Cluster (vergleichbar mit dem univariaten t-Test),
* bzw. der Wilks-A-Test fiir mehr als zwei Cluster (vergleichbar mit der Streuungszerlegung im
univariaten Fall).

Ein signifikantes Testergebnis bedeutet hierbei nicht, dass die Cluster ,richtig” sind, sondern ledig-
lich, dass sich die Mittelwertvektoren der Cluster statistisch signifikant voneinander unterscheiden.
Die anschliefende Ausgabe betrifft im ersten Block die Mittelwertvektoren der Cluster, die im
Scatterplot als Zentren dargestellt werden. Gleichzeitig dienen diese Zentren als Startpunkte fiir den
partitionierenden k-Means-Algorithmus. Dadurch wird die Anzahl der erforderlichen Iterationen
deutlich reduziert, da die vom Ward-Algorithmus gelieferten Startwerte bereits nahezu optimal sind.

In den folgenden Blocken werden die Kovarianzmatrizen der einzelnen Cluster ausgegeben.
Diese werden benétigt, um in Scatterplots mit zwei Variablen Konfidenz-Ellipsen (Ellipsoide) dar-
stellen zu kénnen.

Bei Verwendung der Mahalanobis-Distanzen verdoppelt sich die Ausgabe, da die Ergebnisse
sowohl im Whitening-Raum als auch — nach Riicktransformation — im Originalraum dargestellt
werden.
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1.10.4 Das 2D-Scatterplot

Darstellung von 2D-5catterplots X

Daten einlesen ! | Analyse2!$A42:$F517 J OQM-Stat 5.0.1

: copyright 2017-2026
Zentren einlesen ! | Analyse2!$1$23:5K$25 J

E. Spenhoff
X-Variable Y-Variable ogm@espenhoff.de
Einkommen j | Markenbewusstsein j
¥ Neuen Cluster nach k-Means anwenden. Plot erzeugen
¥ Ausreifer als eigener Cluster darstellen
¥ Zeige die Zentren der Cluster SchlieBen

¥ 195%-Ellipse um Zentroid mit alpha erzeugen: | .95

Um das Scatterplot darzustellen, muss zundchst ein separates Menii ge6ffnet und einige Eingaben
vorgenommen werden. Zuerst wird die Datenmatrix definiert. Diese wird von der ersten Spalte
(Objektname) bis zur vorletzten Spalte (NeuCluster) eingelesen, einschlieflich der Kopfzeile mit
den Variablennamen und bis zur letzten Datenzeile.

Alle anderen Eingaben fiihren entweder zu einer Fehlermeldung, zum Abbruch des Programms oder
zu einer fehlerhaften grafischen Darstellung. Im nachsten Schritt werden die Startwerte im Original-
raum erneut eingelesen, ebenfalls mit Kopfzeile und Clusterspalte. Diese entsprechen den Zentren
der Cluster.

Streudiagramm von Einkommen vs.
Markenbewusstsein (95.0%)
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AnschlieBend kann ausgewdhlt werden, welche Variablen dargestellt werden sollen. Bei nur zwei
Variablen — wie in diesem Beispiel — ist die mogliche Auswahl bereits vorgegeben. Zum Schluss
werden alle Kontrollkdstchen aktiviert, um sdamtliche verfiigbaren Informationen in der Grafik
darzustellen. Danach wird die Grafikerzeugung gestartet. Das Ergebnis ist in der folgenden Abbil-
dung dargestellt.In der Grafik fallen mehrere Punkte unmittelbar auf:

* Die Streuung von Cluster 2 ist deutlich gréfer als die von Cluster 1.

* Die Cluster 1 und 2 besitzen eine ausgeprdgte Schnittmenge; die Trennung der Cluster ist somit
nicht perfekt.

* Der CEO liegt aullerhalb der 95%-Ellipse, jedoch noch innerhalb der 99%-Ellipse und ist damit
kein AusreifSer.

* Der CEO trdgt in besonderem MaRe zur Streuung von Cluster 2 bei.

* Zwei Objekte aus Cluster 2 liegen im Bereich von Cluster 1.

* Ein Objekt aus Cluster 1 liegt im Bereich von Cluster 2.

Um eine Verbesserung zu erreichen, wird eine 3-Cluster-Losung untersucht. Dazu wurde lediglich
die maximale Clusterzahl auf 3 gesetzt; alle iibrigen Einstellungen blieben unverédndert. Auch hier
treten Auffélligkeiten auf, die eine sinnvolle Interpretation erschweren:

Streudiagramm von Einkommen vs.
Markenbewusstsein (95.0%)

35000

30000

25000 o—P a
w A2

20000 W o 3

Markenbewusstsein

H o1
15000 N ——Ellipse_2
/<> / ——Ellipse_3
10000 X Elli 1
> ——Ellipse_
° X Zentren
5000

N\

0 T T T T T T T T T T d
-4000 -2000 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Einkommen

* In Cluster 3 wird ein negatives Einkommen mit hohem Markenbewusstsein kombiniert, was
inhaltlich keinen Sinn ergibt.

* Bei Cluster 1 und 2 zeigt sich eine nahezu lineare Aneinanderreihung der Objekte.

* Die Streuungen von Cluster 1 und 2 sind wieder dhnlich, wahrend Cluster 3 eine deutlich gré-
Bere Streuung aufweist, erneut mallgeblich verursacht durch den CEO.
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Wir gehen zurtiick zu den urspriinglichen Definitionen und nutzen die Malahanonis-Distanz.

Streudiagramm von Einkommen vs.
Markenbewusstsein (95.0%)
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Auch diese Grafik liefert keine sinnvolle Interpretation:

* So ist der CEO mit hohem Markenbewusstsein in der gleichen Gruppe (Cluster 2) wie Berufe
mit niedrigem Markenbewusstsein.

* Auch hier reicht die 95% Ellipse von Cluster 2 bis in den negativen Einkommensbereich.

* Die Streuungen der Cluster 1 und 2 sind sehr unterschiedlich.

Der Datensatz ist aus mehreren Griinden fiir eine Clusteranalyse ungeeignet. Beide Variablen
decken einen sehr grofen Wertebereich ab und sind zudem stark korreliert. Hinzu kommt, dass
lediglich zwei Klassifikationsmerkmale (Variablen) zur Verfiigung stehen und insgesamt viel zu
wenige Objekte vorliegen. Dadurch kann der CEO weder als Ausreiler eindeutig erkannt noch als
eigene Klasse sinnvoll abgegrenzt werden.

Die resultierende Losung ist daher trivial, wie die nachfolgende Grafik einer nichtlinearen Regres-
sion zeigt.
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Markenbewusstsein
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In Abhédngigkeit von der Hohe des Einkommens kann nun das Markenbewusstsein geschdtzt wer-
den; es gilt demnach:

Je hoher das Einkommen, desto hoher ist in der Tendenz das Markenbewusstsein.

1.11 Beispiel: Banknoten

Wir wenden uns nun einen Datensatz von echten und gefédlschten Banknoten zu, welcher in Kapitel 1
ausfiihrlich beschrieben wurde. Eine Besonderheit ist, dass die zwei Gruppen (echte und gefélschte
Banknoten) bekannt sind und deshalb ist dieser Datensatz geeignet, die Wirkungsweise und die
Ergebnisse einer Clusteranalyse, wie in OQM-Stat etabliert ist, zu verifizieren.

Die Eingabementiis sind im vorherigen Beispiel erklart, so dass nur noch eine mogliche, zusatzliche
Ausgabe der Analyse erklart werden muss. Fiir das 2D-Scatterplot gilt das insgesamt 15 Grafiken
erstellt werden miissen um alle Abhédngigkeiten der Variablen beurteilen zu konnen. Dies ist ein
durchaus lohnender Aufwand. Doch zuerst gilt es die Analyseergebnisse zu bewerten. Zur Analyse
verwenden wir die robuste Mahalanobis-Distanz.

1.11.1 Datensatz: Echte und gefélschte Banknoten

Vermessen wurden 100 echte Schweizer Banknoten mit dem Nennwert von 1000 Franken, welche
wegen Gebrauchsspuren aus dem Verkehr gezogen wurden. Zusétzlich wurden 100 gefdlschte
1000-Franken-Banknoten vermessen.

Die Zielsetzung besteht darin, die Frage zu beantworten, ob es moglich ist, die Banknoten anhand
einiger geometrischer Abmessungen automatisch in zwei Gruppen (echt und gefélscht) aufzuteilen,
ohne dass diese Klassenzugehorigkeit im Vorfeld bekannt ist.
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Der Datensatz besteht aus geometrischen Merkmalen von Banknoten. Fiir jede Banknote wurden
mehrere kontinuierliche Merkmale gemessen, beispielsweise:

* Léange der Banknote; x1
* Breite der Banknote, links gemessen; x2
* Breite der Banknote, rechts gemessen; x3
¢ unterer Randabstand; x4
¢ oberer Randabstand; x5
* Lange der Bilddiagonalen; x6

Jede Banknote ist durch einen Merkmalsvektor beschrieben:

X= (X1 X105+ 5 Xy

mit p = Anzahl der Variablen
i = Index der Banknoten.

Die Messung gestaltete sich aufwendig. Um die erforderliche Messgenauigkeit zu erzielen, wurde
ein Episkop mit 10-facher VergroBerung auf einer Projektionsflache verwendet. Die Rohdaten wur-
den aus dem Internet entnommen, stammen jedoch urspriinglich aus dem Buch

Bernhard Flury, Hans Riedwyl:
Angewandte multivariate Statistik, Gustav Fischer Verlag 1983

und liegen in tabellarischer Form vor:
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Echte Banknoten
id x1 x2 x3 x4 x5 x6 id x1 xX2 x3 x4 x5 x6
11 214.8] 131.0] 131.1 9.0 9.7 141.0 51| 214.6] 129.8] 129.4 7.2 10.0] 141.3
2| 214.6] 129.7| 129.7 8.1 9.5 141.7 52| 215.3] 130.6] 130.0 9.5 9.7 1411
3| 214.8] 129.7| 129.7 8.7 9.6] 1422 53| 214.5| 130.1] 130.0 7.8 10.9] 1409
4] 214.8] 129.7] 129.6 7.5 10.4| 1420 54| 215.4| 130.2] 130.2 7.6 10.9] 141.6
5 215.0 129.6] 129.7 10.4 7.7 141.8 55| 214.5| 129.4] 129.5 7.9 10.0] 141.4
6| 215.7 130.8] 130.5 9.0 10.1] 141.4 56| 215.2| 129.7] 129.4 9.2 9.4 142.0
7| 2155 129.5| 129.7 79 9.6| 141.6 57| 2157 130.0] 129.4 9.2 104 141.2
8| 2145 129.6] 129.2 7.2 10.7) 141.7 58| 215.0] 129.6] 129.4 8.8 9.0] 1411
9 214.9] 129.4| 129.7 8.2 11.0] 141.9 59| 215.1] 130.1] 129.9 7.9 11.0] 141.3
10| 215.2] 130.4] 130.3 9.2 10.0| 140.7 60[ 215.1 130.0f 129.8 8.2 10.3| 1414
11| 215.3] 130.4] 130.3 7.9 11.7] 141.8 61| 2151 129.6] 129.3 8.3 9.9] 141.6
12| 2151 129.5 129.6 7.7 10.5| 142.2 62| 215.3] 129.7| 1294 7.5 10.5| 141.5
13| 215.2] 130.8] 129.6 7.9 10.6| 1414 63| 2154 129.8| 1294 8.0 10.6] 141.5
14| 214.7] 129.7| 129.7 7.7 10.9| 141.7 64| 214.5 130.0f 129.5 8.0 10.8] 1414
15| 2151 129.9] 129.7 7.7 10.8] 141.8 65 215.0] 130.0] 129.8 8.6 10.6] 141.5
16| 214.5 129.8| 129.8 9.3 8.5 141.6 66| 215.2] 130.6] 130.0 8.8 10.6] 140.8
17| 214.6] 129.9] 130.1 8.2 9.8 141.7 67| 214.6] 129.5| 129.2 7.7 10.3] 141.3
18| 215.0] 129.9| 129.7 9.0 9.0 141.9 68| 214.8] 129.7 129.3 9.1 9.5| 141.5
19| 215.2| 129.6] 129.6 7.4 11.5] 141.5 69 215.1] 129.6] 129.8 8.6 9.8] 141.8
20 214.7 130.2| 129.9 8.6 10.0] 141.9 70| 214.9] 130.2| 130.2 8.0 11.2] 139.6
21| 215.0f 129.9| 129.3 8.4 10.0 1414 711 213.8] 129.8] 129.5 8.4 11.1] 140.9
22| 215.6] 130.5 130.0 8.1 10.3] 141.6 72| 2152 129.9] 129.5 8.2 10.3] 1414
23| 215.3] 130.6] 130.0 8.4 10.8] 141.5 73| 215.0] 129.6] 130.2 8.7 10.0] 141.2
24 215.7 130.2| 130.0 8.7 10.0] 141.6 74| 214.4] 129.9] 129.6 7.5 10.5| 141.8
25 2151 129.7 129.9 7.4 10.8] 1411 75| 215.2] 129.9] 129.7 7.2 10.6] 1421
26| 215.3] 130.4| 1304 8.0 11.0] 142.3 76| 2141 129.6] 129.3 7.6 10.7) 141.7
27| 2155 130.2| 130.1 8.9 9.8 1424 77 214.9] 129.9] 130.1 8.8 10.0] 141.2
28| 2151 130.3] 130.3 9.8 9.5 141.9 78| 214.6] 129.8] 129.4 7.4 10.6] 141.0
29| 215.1] 130.0f 130.0 7.4 10.5| 141.8 79| 2152 130.5| 129.8 7.9 10.9] 1409
30| 214.8] 129.7] 129.3 8.3 9.0 1420 80| 214.6] 129.9] 129.4 7.9 10.0] 141.8
31| 215.2] 130.1] 129.8 7.9 10.7] 141.8 81| 215.1| 129.7] 129.7 8.6 10.3] 140.6
32| 214.8] 129.7] 129.7 8.6 9.1] 1423 82| 214.9] 129.8] 129.6 7.5 10.3] 141.0
33| 215.0] 130.0 129.6 7.7 10.5| 140.7 83| 215.2| 129.7] 129.1 9.0 9.7 141.9
34| 2156 130.4] 130.1 8.4 10.3] 141.0 84| 2152 130.1] 129.9 7.9 10.8] 141.3
35| 215.9] 130.4] 130.0 8.9 10.6] 141.4 85| 215.4| 130.7] 130.2 9.0 11.1] 141.2
36| 214.6] 130.2] 130.2 9.4 9.7] 141.8 86| 215.1] 129.9] 129.6 8.9 10.2] 141.5
371 2155 130.3] 130.0 8.4 9.7 141.8 87| 2152 129.9] 129.7 8.7 9.5 1416
38| 215.3] 129.9] 129.4 7.9 10.0] 142.0 88| 215.0] 129.6] 129.2 8.4 10.2] 1421
39| 215.3] 130.3] 130.1 8.5 9.3 1421 89| 214.9] 130.3] 129.9 7.4 11.2] 1415
40( 213.9( 130.3] 129.0 8.1 9.7 141.3 90| 215.0] 129.9] 129.7 8.0 10.5| 142.0
41| 2144 129.8| 129.2 8.9 94| 1423 91| 214.7] 129.7] 129.3 8.6 9.6 141.6
42| 214.8] 130.1| 129.6 8.8 9.9] 1409 92| 215.4| 130.0] 129.9 8.5 9.7 1414
43| 214.9] 129.6] 1294 9.3 9.0 141.7 93| 214.9] 129.4| 129.5 8.2 99| 1415
44 2149 130.4| 129.7 9.0 9.8 140.9 94| 214.5] 129.5| 129.3 7.4 10.7| 141.5
45 214.8] 129.4| 1291 8.2 10.2] 141.0 95| 214.7] 129.6] 129.5 8.3 10.0] 142.0
46| 214.3] 129.5| 1294 8.3 10.2] 141.8 96| 215.6] 129.9] 129.9 9.0 9.5 141.7
47 214.8| 129.9| 129.7 8.3 10.2| 1415 97| 215.0] 130.4] 130.3 9.1 10.2] 1411
48| 214.8] 129.9] 129.7 7.3 10.9] 142.0 98| 214.4] 129.7] 129.5 8.0 10.3] 141.2
49 214.6] 129.7| 129.8 7.9 10.3] 1411 99| 215.1] 130.0] 129.8 9.1 10.2] 141.5
50| 214.5| 129.0 129.6 7.8 9.8 1420 100{ 214.7 130.0 1294 7.8 10.0] 141.2
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Gefélschte Banknoten

id xi X2 X3 x4 X5 X6 id xi X2 X3 x4 X5 X6
101| 214.4[ 130.1[ 130.3 9.7) 11.7] 139.8 151| 214.9] 130.3[ 129.9 11.9] 10.6] 139.8
102| 2149 1305 130.2] 11.0] 11.5[ 139.5 152| 2146 1299 129.7) 11.9] 10.1f 139.0
103| 214.9[ 130.3] 130.1 87 11.7] 140.2 163| 214.6] 129.7] 129.3] 104] 11.0[ 139.3
104| 215.0[ 130.4] 130.6 9.9 10.9] 140.3 154| 214.5( 130.1] 130.1] 12.1] 10.3| 139.4
105( 214.7[ 130.2[ 130.3[ 11.8] 10.9f 139.7 155| 214.5( 130.3] 130.0] 11.0] 11.5[ 139.5
106| 215.0[ 130.2[ 130.2[ 10.6f 10.7[ 139.9 156 215.1] 130.0f 130.3] 11.6] 10.5[ 139.7
107{ 2153 130.3] 130.1 9.3] 12.1] 140.2 157 214.2[ 129.7[ 129.6] 10.3] 11.4[ 139.5
108| 214.8[ 130.1] 1304 9.8 11.5 139.9 158| 214.4f 130.1] 130.0] 11.3] 10.7] 139.2
109 215.0[ 130.2] 129.9] 10.0] 11.9] 1394 159| 214.8| 130.4| 130.6] 12.5] 10.0[ 139.3
110 215.2[ 130.6] 130.8] 104] 11.2[ 140.3 160] 214.6] 130.6] 130.1 8.1 121] 137.9
11| 2152 130.4] 130.3 8.0 11.5 139.2 161| 215.6[ 130.1] 129.7 74 12.2] 1384
12| 215.1] 130.5[ 130.3] 10.6] 11.5] 140.1 162[ 214.9] 130.5[ 130.1 9.9 10.2] 138.1
113[ 2154 130.7] 131.1 9.7] 11.8] 140.6 163[ 214.6] 130.1f 130.0f 11.5] 10.6] 139.5
114 2149 1304 1299 114 11.0[ 139.9 164| 214.7| 1301 1302 11.6[ 10.9] 139.1
115 2151 130.3] 130.0 10.6] 10.8] 139.7 165 214.3| 130.3| 130.0] 11.4] 10.5[ 139.8
116] 215.5( 130.4] 130.0 82 11.2] 139.2 166] 215.1| 130.3| 130.6] 10.3] 12.0[ 139.7
17| 214.7[ 130.6] 130.1] 11.8] 10.5[ 139.8 167| 216.3| 130.7] 130.4] 10.0] 10.1f 138.8
118 214.7[ 130.4[ 130.1f 121 104 139.9 168| 215.6] 130.4] 130.1 96| 11.2] 138.6
119 214.8| 130.5[ 130.2[ 11.0f 11.0[ 140.0 169 214.8[ 129.9] 129.8 9.6] 12.0] 139.6
120{ 214.4| 130.2[ 129.9 10.1f 12.0f 139.2 170{ 214.9] 130.0f 129.9 11.4] 10.9[ 139.7
121 214.8[ 130.3] 1304 101 121 139.6 171 2139 130.7] 130.5 8.7 11.5 137.8
122| 2151 130.6] 130.3] 12.3] 10.2] 139.6 172 2142 130.6] 130.4] 12.0] 10.2] 139.6
123| 2153 130.8] 131.1] 11.6] 10.6] 140.2 173| 214.8] 130.5| 130.3] 11.8] 10.5[ 139.4
124| 2151 130.7[ 1304 105[ 11.2[ 139.7 174| 214.8] 129.6] 130.0[ 104 11.6] 139.2
125( 214.7| 130.5[ 130.5 9.9 10.3] 140.1 175 214.8[ 130.1f 130.0f 11.4] 10.5[ 139.6
126] 214.9] 130.0[ 130.3[ 102 11.4[ 139.6 176] 214.9] 1304 1302 11.9] 10.7[ 139.0
127| 215.0[ 130.4] 1304 94| 11.6] 140.2 177) 2143 130.1] 130.1] 11.6] 10.5[ 139.7
128| 2155 130.7] 130.3] 10.2] 11.8[ 140.0 178| 214.5( 130.4] 130.0 99| 12.0] 139.6
129 2151 130.2] 130.2] 101 11.3[ 140.3 179 214.8[ 130.5| 130.3] 10.2] 121 139.1
130 214.5[ 130.2] 130.6 9.8 12.1] 139.9 180] 214.5[ 130.2] 130.4 82| 11.8] 137.8
131 214.3| 130.2[ 130.0f 10.7] 10.5[ 139.8 181| 215.0[ 130.4[ 1301 114 10.7] 139.1
132| 2145 130.2[ 129.8] 12.3] 11.2[ 139.2 182 214.8[ 130.6] 130.6 8.0 11.4] 1387
133 2149 130.5 130.2] 10.6] 11.5[ 139.9 183| 215.0f 130.5 130.1] 11.0] 11.4[ 139.3
134| 2146 130.2| 1304 105 11.8] 139.7 184| 214.6] 130.5 130.4] 10.1] 11.4[ 139.3
135 2142 130.0] 130.2] 11.0] 11.2] 139.5 185 214.7[ 130.2| 130.1] 107 11.1[ 139.5
136] 214.8[ 130.1] 1301 11.9] 11.1f 139.5 186| 214.7| 130.4| 130.0) 11.5] 10.7[ 139.4
137| 2146 129.8[ 1302 10.7] 11.1f 1394 187 214.5[ 130.4[ 130.0 8.0 12.2] 138.5
138 214.9] 130.7[ 130.3 93] 11.2] 1383 188 214.8] 130.0[ 129.7[ 11.4] 10.6] 139.2
139 214.6] 130.4| 130.4] 11.3] 10.8] 139.8 189 214.8[ 129.9] 130.2 96| 11.9 1394
140 2145 130.5 130.2] 11.8] 10.2] 139.9 190 214.6] 130.3| 130.2] 12.7 9.1 139.2
141 2148 130.2] 130.3] 10.0] 11.9[ 1393 191 2151 130.2] 129.8] 10.2] 12.0[ 139.4
142| 214.7[ 130.0] 129.4] 102 11.0[ 139.2 192| 2154 130.5] 130.6 8.8 11.0] 138.6
143| 214.6] 130.2[ 1304 11.2] 10.7[ 139.9 193 214.7[ 130.3[ 130.2[ 10.8] 11.1f 139.2
144/ 2150 130.5[ 130.4[ 10.6[ 11.1f 139.9 194 215.0f 130.5[ 130.3 9.6 11.0] 1385
145 2145 129.8[ 129.8) 11.4] 10.0 139.3 195( 214.9] 130.3] 130.5( 11.6] 10.6] 139.8
146| 2149 130.6] 130.4] 11.9] 10.5[ 139.8 196| 215.0[ 130.4] 130.3 99| 121] 139.6
147| 215.0[ 130.5| 130.4] 11.4] 10.7[ 139.9 197| 2151 130.3] 129.9] 10.3] 11.5[ 139.7]
148| 215.3[ 130.6] 130.3 9.3 11.3] 1381 198| 214.8f 130.3] 130.4] 10.6] 11.1] 140.0
149| 214.7[ 130.2] 130.1] 10.7] 11.0[ 139.4 199] 214.7[ 130.7] 130.8] 11.2] 11.2] 139.4
150[ 214.9| 129.9] 130.0 9.9 123| 1394 200] 214.3] 129.9] 1299 102 115 139.6
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Die Klassenzugehorigkeit (echt / gefdlscht) ist in der Analyse nicht bekannt und dient spéter aus-
schlieBlich zur Validierung der Clusterstruktur.

1.11.2 Die Analyseergebnisse

Objekt Lange Links Rechts Unten Oben Diagonal Cluster  AusreiRer NeuCluster DistanzmaRe

70 214.9 130.2 130.2 8 11.2 139.6 1 0 2| 2.60181496
104 215 130.4 130.6 9.9 10.9 140.3 2 0 1] 1.90266932
110 215.2 130.6 130.8 10.4 11.2 140.3 2 0 1] 2.34632774
123 215.3 130.8 131.1 11.6 10.6 140.2 2 0 1] 3.23190137
125 214.7 130.5 130.5 9.9 10.3 140.1 2 0 1] 2.35299985

Da wir wissen, dass die ersten 100 Banknoten echt sind und die zweiten 100 Banknoten gefdlscht
sind, konnen wir die Ergebnisse der vorangestellten Tabelle verifizieren. Diese fiinf Banknoten wur-
den vom Ward-Algorithmus falsch klassifiziert, weil Objekte mit den Nummern 1-100 echte Bankno-
ten sind und in Cluster 2 der echten Banknoten gehdren, Objekte mit den Nummern 101-200 sind
gefédlschte Banknoten und gehdren in Cluster 1. Hier zeigt sich wie wichtig die Verbesserung durch
das partitionierende Verfahren k-Means ist. Die Spalte NeuCluster zeigt richtige Zuordnungen nach
Partitionierung. In der Spalte NeuCluster sind alle Zuordnungen der gesamten Tabelle richtig.

Clustering mittels Ward- (und k-Mean-Algorithmus)

Bedingungen fiir Ward-Algorithmus

DistanzmaR:| Mahalanobis
Ausreiflertest:| MD?Chi?

alpha: 0.99
Cluster-Suche (CH):| 2..10

k*(optimal): 2

Anzahl Variabler p: 6

n (original): 200

n (ohne Outlier): 191

Rechenzeit (s): 0.051

Partitionierung mit k-Means nach Ward-Resultaten

max. lterationen: 100| Hotellings TA2 -Test
Toleranz:| 0.0000001 T™2: | 2290.9896
lterationen: 2 p-Wert: 0
Umklassifikationen: 6 HO: | verwerfen

SSE (Start)| 860.395914
SSE (Ende):| 852223332

Der erste Auswertungsblock zeigt 9 Ausreiller = n(Original) — n(ohne Outlier), dies ist nicht ver-
wunderlich. So haben die echten Noten einige Gebrauchsspuren (Knitterfalten), welche zu Messfeh-
lern gefiihrt haben konnen. Bei den gefédlschten Banknoten ist keines Wegs sicher, dass alle von
dem gleichen Félscher stammen. Auch konnte es sich um Produktionsfehler handeln.

Im zweiten Auswertungsblock kénnen wir die erreichte Verbesserung durch die Partitionierung
anhand der SSE beurteilen. Nach der Partitionierung ist die Quadratsumme SSE niedriger. Der
Hotellings T>-Test ist hoch signifikant, eine Vorsetzung fiir eine gute Trennung der Cluster. Sollte
das Ergebnis die Nullhypothese bestétigen ist eine Trennung der Cluster nicht mehr moglich. Der
Test bezieht sich nicht auf die Cluster, sondern deren Mittelwerte.
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Detaillierte CH-Tabelle

Wk (Within) Bk (Between)  CH(k)
860.395914( 168.630496| 37.0424396
759.184548| 269.841862| 33.4110264
675.515135| 353.511275| 32.6203441
616.059966| 412.966444| 31.1705689
569.168697| 459.857713| 29.8940112
527.001905| 502.024505| 29.2132116
497.920447| 531.105962| 27.8852322
471.160544| 557.865866| 26.9365689
447662791 581.363619| 26.117579

Olo|N|o|o||w|INd|x

—
o

Die CH-Tabelle zeigt den grofSten Wert fiir zwei Cluster an, deswegen macht es keinen Sinn die
Anzahl der Cluster zu erh6hen, weil der CH-Test objektiv und sehr gut ist. Die ndchsten Ausgabe-
blécke Zentren und Kovarianzen sind wichtig, aber auch abstrakt. IThre Resultate kdnnen besser
anhand der Grafiken interpretiert werden.

AusreiBeranalyse

Zentren: Global | Cluster1 | Cluster2 | Lange | Links | Rechts | Unten | Oben [ Diagonal
Ausreifer 4.100230948 2.326347874
1 5.09817595| 5.2794076( 5.09626739| -0.2643259( 2.60331779|  1.509581| -2.44844415| -3.22609479( 0.30315069
5 4.20944597| 4.55276557| 4.07237412| 0.28075088| -1.55943565| 0.6941943| 1.6189848] -3.36629693 -0.89600602
13 424414475 4.58085724| 4.11265461| 0.82582766| 1.75678494| -3.46178145| -1.07145657| -0.20616753| 0.89502598
40 5.58409364| 5.86958555( 5.45783195| -2.71717143( 1.20000895| -4.32579614] -1.18832187| -1.32107671| 0.29387503
160 4.20007962| 4.1100651| 4.49695555| -0.80940269| 1.58831998| -1.02512626/ -1.96275037| 1.20986027| -2.73535776
161 4.78604835| 4.81133839| 4.95053205( 1.91598123| -0.52801214| -0.80659127| -0.68127851| 2.64543271| -3.23633721
167 5.20433227] 5.19942201| 5.38305918| 3.82374998| 0.72325742| 0.03226256| 1.00646277| -0.67952039) -3.17481837
171 5.34099824| 5.23588497|  5.609648| -2.71717143| 2.35062034| 0.06803528| -2.72176281| -0.4728666] -2.69344738
180 4.50732843| 4.40594949| 4.80124092| -1.08194108| 0.50551538| 1.36217418| -2.03702742| 0.72108263] -3.43930857

Die letzte Ausgabe ist die Ausreifleranalyse. In der zweiten Zeile sind die verschiedenen Zentren
benannt. Die dritte Zeile definiert den Grenzwert fiir einen Ausreiller von den jeweiligen Zentren.
Ab der dritten Zeile werden fiir jeden Ausreiller die Abweichungen zum jeweiligen Zentrum ausge-
geben. Fiir die Variablen werden signifikante Abweichungen im Fettdruck ausgegeben, dies gibt uns
einen Hinweis, welche Variable voraussichtlich fiir den Ausreiller verantwortlich ist. Aufféllig ist,
dass alle Ausreiller des Cluster 1 signifikante Abweichungen fiir die Diagonale produzieren.

Letztendlich kann nur eine Identifikationsanalyse eine besondere Art der Diskriminanzanalyse die
Frage, welche Variable fiir die Abweichungen verantwortlich ist, beantworten. Die Analyse wird in
einem folgenden Kapitel zur Diskriminanz- und Identifikationsanalyse fortgesetzt.

Im néchsten Schritt werden wir alle 15 moglichen 2D-Scatterplots darstellen.
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Bild: Lange vs. Links

Clusteranalyse mit OQM-Stat

Streudiagramm von Lange vs. Links (95.0%)
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Clusteranalyse mit OQM-Stat

Bild: Lange vs. Unten

Streudiagramm von Lange vs. Unten (95.0%)
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Clusteranalyse mit OQM-Stat

Bild: Léange vs. Diagonale

Streudiagramm von Lange vs. Diagonal (95.0%)
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Bild; Links vs. Rechts

Streudiagramm von Links vs. Rechts (95.0%)
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Bild; Links vs. Unten

Clusteranalyse mit OQM-Stat

Streudiagramm von Links vs. Unten (95.0%)
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Bild: Links vs. Oben
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Bild: Links vs. Diagonal

Streudiagramm von Links vs. Diagonal (95.0%)
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Bild: Rechts vs. Unten

Streudiagramm von Rechts vs. Unten (95.0%)
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Bild: Rechts vs. Oben

Streudiagramm von Rechts vs. Oben (95.0%)
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Bild: Rechts vs. Diagonal

Streudiagramm von Rechts vs. Diagonal (95.0%)
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Bild: Unten vs. Oben

Clusteranalyse mit OQM-Stat

Streudiagramm von Unten vs. Oben (95.0%)
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Bild: Unten vs. Diagonale
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Bild: Oben vs. Diagonale

Streudiagramm von Oben vs. Diagonal (95.0%)
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Die Interpretation 2D-Scatterplots ist nicht einfach, versucht man doch einen mehrdimensionalen
Raum anhand verschiedener zweidimensionaler Rédume darzustellen. Doch deuten groe Abweichun-
gen von Ausreiflern zu den Ellipsen auf die verantwortlichen Variablen hin. Aufféllig ist auch, das die
GroBen der Ellipsen (ein MaR fiir die Streuung) fiir den Cluster 2 (echte Banknoten) meist grofer ist
als die von Cluster 1 (gefédlschte Banknoten). Dies ist wohl die Gebrauchsspuren der echten Bankno-
ten und der damit einhergehenden Messunsicherheit zurtickzufiihren. Auerdem ist erkennbar, welche
Variablen einen grofen Einfluss auf die Trennfunktion der Cluster haben. Wenn die Ellipsen nur eine
kleine oder gar keine Schnittmenge ergeben ist der Varableneinfluss fiir die Trennfunktion groR,
umgekehrt gilt, dass bei grofen Schnittmengen kein oder nur ein geringer Einfluss festgestellt werden
kann. Demnach ist der Einfluss der Lénge gering, Links und Rechts haben einen Einfluss, den gréten
Einfluss kann man fiir die Variablen Unten, Oben und Diagonale erwarten.

Da die Clusteranalyse ein strukturbildendes Verfahren ist, sind fast alle Aussagen nur Vermutungen
und Hypothesen. Damit die Hypothesen gepriift werden kénnen bedarf es strukturpriifender Verfah-
ren. Fir die Clusterpriifung und Trennfunktion ist dies die Diskriminanzanalyse, welche wir in
OQM-Stat im wichtigen Zweigruppenfall mittels multipler Regressionsanalyse durchfiihren kon-
nen. Dazu sind die Daten entsprechend aufzubereiten. Fiir Priifung neuer Objekte oder AusreilSer
liefert die Identifikationspriifung entsprechende Ergebnisse.

Deshalb ist der ndachste Schritt, die Diskriminanzanalyse und Identifikationsanalyse im Zweigrup-
penfall darzulegen und ihre Anwendung am Beispiel der Banknoten zu demonstrieren.
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2 Diskriminanz- und Identifikationsanalyse im Zweigruppenfall

Die Diskriminanzanalyse dient der strukturpriifenden Auswertung bereits gebildeter Gruppen (Clus-
ter) oder bestehender Gruppen. Im Zweigruppenfall wird untersucht, ob sich zwei Gruppen statis-
tisch trennen lassen und wie gut diese Trennung ist. Aullerdem wird die Frage beantwortet, wie gut
neue Beobachtungen einer Gruppe zugeordnet werden kénnen, und mit welcher Wahrscheinlichkeit
eine Beobachtung zu Gruppe 1 oder Gruppe 2 gehort.

Die Identifikationsanalyse bei der ein Referenzcluster gegen eine neue Beobachtung (Objekt)
gepriift wird. Auch kénnen Ausreiler verifiziert werden. Die Identifikationsanalyse ist eine spezi-
elle Diskrimianzanlyse im Zweigruppenfall, wobei der Referenzcluster unter beliebigen Clustern
ausgewadhlt werden.

In OQM-Stat wird die Diskriminanzanalyse im Zweigruppenfall nicht iiber klassische Fisher-Dis-
kriminanzfunktionen, sondern {iber eine dquivalente Formulierung mittels multipler Regression rea-
lisiert. Dies erlaubt eine einheitliche mathematische Behandlung und einen klaren probabilistischen
Zugang.

2.1 Datenaufbereitung
Aus der Clusteranalyse werden folgende Spalten verwendet:
Objekt (ID)
* Variablen: xi, xo, ..., X,

e Clusterzuordnung (Cluster oder NeuCluster)
* Ausreiflerkennzeichnung

Die Objekt (ID) ist notwendig um die Objekte nach der Diskiminanzanalyse bzgl. Ausreiflern und
grolBen Residuen, sowie groRen Einfliissen auf die Diskriminanzfunktion zu bewerten. Da die multi-
ple Regression eine eigene ID erzeugt, muss die Objekt-Spalte kopiert und in die Ausgabe der
multiplen Regression manuell eingefiigt werden. Dies ist nicht zwingend erforderlich, macht aber
einfacher die Objekte zu identifizieren. Die Variablen werden zur Berechnung der Diskriminanz-
funktion benoétigt. Dies gilt auch fiir die Clusterzuordnung die verwendet wird um die Anzahl von
Objekten jeden Clusters zu ermitteln und aus diesen die Diskriminanzwerte der Gruppen nach der
Fisher-Codierung festzulegen. Die Spalte der Ausreiler wird zur Bereinigung des Datensatzes
benétigt. Vor der Diskriminanzanalyse erfolgt automatisch:

* Entfernung aller Ausreiller
* Reduktion auf genau zwei Cluster

Erzeugung einer neuen Datenmatrix mit:

* der Objekt (ID)
* den Variablen x;, ..., x,
¢ einer zuséatzlichen Diskriminanzvariable

Die Datenmatrix aus Variablen plus Diskriminanzvariable kann natiirlich auch direkt in Excel
erstellt werden, eine zuvor durchgefiihrte Clusteranalyse ist nur erforderlich, wenn keine zwei
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Gruppen existieren. Zur Regression wird eine kiinstliche Zielvariable D definiert. StandardmalSig
wird die Fisher-Codierung verwendet: Fiir zwei Gruppen mit Umfdngen n; und n.:

n
¢, =—2— fiir Gruppe 1
n +n,
D=
-n
c, = tir Gruppe
) L fiir Gruppe 2
n +n,

Eigenschaften dieser Codierung:

* gewichtete Zentrierung bei ungleichen GruppengrofSen

* bei n; = n,: symmetrisch um 0

* Summe aller Diskriminanzwerte = 0

* Addition der Betréige von den Gruppenmittelwerten ergibt das Bestimmtheitsmaf§ R*
* maximiert die Trennscharfe (dquivalent zur Fisher-Diskriminanz)

Alternativ konnen auch einfache Codierungen (z. B. 1 und 2) verwendet werden, jedoch ist die Fis-
her-Codierung statistisch optimal.

2.2 Trennfunktion (Diskriminanzfunktion)

Der Datensatz wird in zwei Stufen, jeweils mit Kopfzeile eingelesen, zuerst die Variablen gefolgt
von der Spalte in der die Diskriminanzwerte D stehen. Die multiple Regression mit D als abhéngi-
ger Variabler liefert die Diskriminanzfunktion:

mit: by = Achsenabschnitt der Diskriminanzfunktion
b; = Diskriminanzkoeffizienten

Diese Funktion ist die Trennfunktion zwischen den beiden Gruppen. Jede Beobachtung erhélt einen
Diskriminanzwert d;;, diese Werte stehen in der Spalte ,,geschitzt”. Als kritischer Schwellenwert
dient der Mittelpunkt zwischen den Gruppenzentren der Diskriminanzwerte:
D D, + D,
krit —
2

Zuordnung: wenn d; > Dy — Gruppe 1
wenn d;j < Dyic -» Gruppe 2

Der Wert Dkrit wird auch als Trennmall TM bezeichnet. Dies entspricht der linearen Entscheidungs-
grenze. Fiir jede Beobachtung wird gepriift: die tatsdchliche Gruppenzugehorigkeit, die zugeordnete
Gruppe nach Trennfunktion. Daraus entsteht eine Konfusionsmatrix:

vorhergesagt fiir
Gruppe1 | Gruppe2
Gruppe1: | richtig falsch
Gruppe2: | falsch richtig

51



Clusteranalyse mit OQM-Stat

Daraus ergeben sich die Kennzahlen fiir die Trefferquote, die Fehlklassifikationsrate und die Sensiti-
vitdt / Spezifitdt. Die Diskriminanzwerte der beiden Gruppen werden als normalverteilt angenommen:

D~ N(u,0}), D~N(u,,03)

Fiir einen neuen Wert d werden berechnet:

PG ld)=— LD (G, |ay=— L)
fid)+ /() fid)+ /()

mit den Dichtefunktionen f;, f.. Die Zuordnung erfolgt nach der héheren Wahrscheinlichkeit.

2.2.1 Analyseaufbereitung der Banknoten

Ausgehend von den Ergebnissen der Clusteranalyse, welche wir als Auszug darstellen:

Objekt Lange Links Rechts Unten Oben Diagonal Cluster ~ Ausreifer NeuCluster
1 214.8 131 131.1 9 9.7 141 1
2 214.6 129.7 129.7 8.1 9.5 141.7 2 0 2
3 214.8 129.7 129.7 8.7 9.6 142.2 2 0 2
4 214.8 129.7 129.6 7.5 10.4 142 2 0 2
5 215 129.6 129.7 10.4 7.7 141.8 1
6 215.7 130.8 130.5 9 10.1 141.4 2 0 2

Nun konnen wir einen Meniipunkt ,,Prep. Diskriminanzanalyse® in OQM-Stat aufrufen und miissen
die gezeigten Daten komplett einlesen. Das Menii zeigt die folgende Grafik:

| Maorbereitung zur Diskriminanz- cder ldentifikaticnsanalyse im Zweigruppenfal ]

| ¥ Fisher-Codierung der Cluster! 0OQM-5tat 5.0.1 §

Auswahl des Verfahren Sy LRI

E. Spenhoff
(¥ Diskriminanzanalyse oqm@espenhoff.de
" Identifikationsanalyse mit neuem Objekt
i Ergebnismatrix der Clusteranalyse einlesen ! J '

Starten | Beenden ‘

Nach dem Einlesen der Daten und dem Driicken des Startbutton erhalten wir eine bereinigte Datei,

welche fiir die Diskriminanzanalyse (multiple Regression) genutzt werden kann. Das Ergebnis zeigt
folgende Tabelle (Auszug).

Objekt Lange Links Rechts Unten Oben Diagonal D
2 214.6 129.7 129.7 8.1 9.5 141.7 0.5
3 214.8 129.7 129.7 8.7 9.6 142.2 0.5
4 214.8 129.7 129.6 7.5 10.4 142 0.5
6 215.7 130.8 130.5 9 10.1 1414 0.5
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2.2.2 Die Diskriminanzanalyse der Banknoten

Die multiple Regression bestimmt Koeffizienten by, b, ..., b, durch Minimierung der Fehlerqua-
dratsumme:

mit
R p
D;=by+ ) bx;
Jj=1
Dies ist dquivalent zur Losung des Normalgleichungssystems:
b=X"X)"'X'D

Wir lesen die aufbereiteten Daten im Menii der multiplen Regression ein und dabei miissen die
Checkboxen ,,mit Regressionkonstante* und ,,Ausgabe der Residuen® aktiviert sein. Mit Anklicken
des Button ,,Ausfiihren startet die Diskriminanzanalyse.

OLS Regression Form *
X Variablen mit Namen einlesen ! | | Daten_dii$852:5G$192 J|

Y Variable mit Namen einlesen | | | Daten_dikrilsHs2:5H5132 -

lv mit Regressionskonstante ¥ :Ausgabe der Residuen: [ Mischungsanalysen

Typ des robusten Standardfehler

(" HCO (" HC1 f{» HC2 (" HC3 Ausfiihren
Ausgabe der Regression
* Neues Tabellenblatt Beenden
" Ausgabe beginnend in Zelle ? | J
0QM-&tat 5.0.1
Ausgabe der Matrizen copyright 2017-2026
" Ausgabe der Ergebnisse E. Spenhaff
ogmi@espenhoff.de

Wir kopieren die Objektspalte aus der bereinigten Datei und fiigen diese Werte in die Spalte , Nr.“
der Residuenausgabe ein. Das Ergebnis zeigt der Auszug folgender Ergebnisse:
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Objekt beobachtet  geschatzt Residual ~ Std.Residual  Hebel stud. Res  del. Res  Cooks D Dffits MD*2

-0.50000000f -0.58977805 0.08977805 0.68525033| 0.03127148[ 0.69622275| 0.69523927| 0.00223535| 0.12491296| 4.91557324
-0.50000000f -0.60445649] 0.10445649| 0.79728670| 0.02452945| 0.80724886| 0.80647742| 0.00234094| 0.12788778| 3.64132922
-0.50000000f -0.62779025 0.12779025 0.97538663| 0.01999352( 0.98528603| 0.98520697| 0.00282935| 0.14072058| 2.78403826
-0.50000000 -0.34814464| -0.15185536| -1.15906882| 0.05838823| -1.19446460| -1.19586743| 0.01263869| -0.29778976| 10.04063897
-0.50000000f -0.58521209| 0.08521209| 0.65039964| 0.06639552| 0.67312982| 0.67212074| 0.00460337| 0.17924012|11.55401647
-0.50000000f -0.60584831| 0.10584831| 0.80791010| 0.03877398| 0.82404377| 0.82331814| 0.00391307| 0.16535796| 6.33354511
9| -0.50000000f -0.37332376| -0.12667624| -0.96688373| 0.05383367| -0.99400943| -0.99397681| 0.00803100| -0.23709341| 9.17982585
10| -0.50000000] -0.15603273| -0.34396727| -2.62540444| 0.02559293| -2.65965927| -2.70518157| 0.02654199| -0.43841580| 3.84232658
11| -0.50000000] -0.32513161| -0.17486839| -1.33472069| 0.05768102| -1.37496431| -1.37834056| 0.01653179] -0.34101544| 9.90697621
12| -0.50000000] -0.61337049] 0.11337049| 0.86532475| 0.03523127| 0.88098298| 0.88044165| 0.00404895| 0.16824925| 5.66397357

O|N|D| B |wlN

Die Spalten ,,Objekt, beobachtet und geschitzt“ sind die wichtigsten Spalten, auch fiir die spezielle
Ausgabe der Diskriminanzanalyse. Alle weiteren Spalten dienen der Beurteilung einzelner Objekte,
die letzte Spalte ist die Malahanobis-Distanz und zeigt, ob irgendwelche Objekte Ausreifler sind.
Cook’s D ist die wichtigste Maflzahl zur Bestimmung sogenannter einflussreicher Beobachtungen,
widhrend die DFFITS den Einfluss auf das angepasste Modell anzeigen. Die hauptsdchliche Aus-
gabe der Analyse entspricht der multiplen Regression.

Regressionsstatistiken fiir D

Anz. Beob.: 190 Ursache SSQ FG MSS F-Stat p-Wert
Anz. fehl. Beob.: 0 TSS| 47.50000000 189]  0.25132275
R*:[ 0.93386988 RSS| 44.35881942 6| 7.39313657(430.71194364| 0.00000000
StAbw. Error:|  0.13101497 Error| 3.14118058 183|  0.01716492
AIC_ols:|-765.46081886 LoF -
BIC_ols:|-742.73165036 pure Error
Variable Koeffizient SE SE (HC2) t SE t HC2 _SE p_HC2 VIF

Konstante| 27.87833281| 6.58563537| 7.39205892| 4.23320321| 3.77138942 0.00001821] 0.00010950
Lange| -0.03036790[ 0.03211821| 0.03685717| -0.94550388| -0.82393452| 0.17282421| 0.20552465] 1.41210361
Links| -0.11884019 0.04583350] 0.04868530] -2.59286771| -2.44098696| 0.00514366( 0.00779953] 2.89433963
Rechts|  0.16244973]  0.04084699| 0.04596566] 3.97703042| 3.53415424 0.00005020] 0.00025901 2.84171583
Unten|  0.13846782| 0.01070477| 0.01137715] 12.93514746] 12.17069946| 0.00000000/ 0.00000000( 2.67613178
Oben|  0.14571235| 0.01738523| 0.01765932 8.38138941| 8.25129882| 0.00000000] 0.00000000] 1.96535335
Diagonal| -0.21251358| 0.01592547| 0.01681256| -13.34425969| -12.64017102] 0.00000000{ 0.00000000] 3.51021795

Priifung auf Heteroskedastizitat Priifung auf Normalitat
| BP-Test| 1.31929610] 0.25071842) | ADTest] 0.44568399] 0.28266382]

Die Diskriminanzfunktion ergibt sich aus der multiplen Regression:
fiir das Beispiel gilt:
D= by + byx; + byxy + byxy + byxy + bsxs + bgx

und allgemein gilt:

R p
D=bhy+ ) bx;
j=1
Die Koeffizienten bj werden aus den Banknotendaten geschatzt.
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Jede Variable trdgt mit einem Gewicht zur Trennung bei. Grole Betrdge von b; zeigen besonders
trennwirksame Merkmale. In der Praxis erweist sich haufig die Bilddiagonale xs als dominant.

Rechts in der ANOVA sehen wir, dass die Nullhypothese abgelehnt wird. Wir haben eine gesicherte
Diskriminanzfunktion. Das BestimmtheitsmaB R? ist hoch. Die Varianzen der Residuen sind homo-
gen und die Residuen normalverteilt. Die Variable ,,Ldnge“ ist nicht signifikant, tragt zur Trennung
der Cluster nur wenig bei. Alle anderen Variablen sind fiir die Trennung der Cluster bedeutsam. Zur
spezifischen Ausgabe der Diskriminanzanalyse miissen wir ein weiteres Menii aufrufen.

Ausgabe der Diskriminanz- und ldentifikaticnsanalyse x|

Einlesen der Spalte L und M mit Kopfzeile | Regression!$K43:4M$193 J I

Einlesen der Anzahl Variabler p |

0QM-Stat 5.0.1 F— |

copyright 2017-2026
E. Spenhoff
ogm@espenhoff.de Abbruch

Nach der Eingabe der Spalten ,,Objekt, beobachtet und geschitzt“ sowie der Anzahl Variabler p,
starten wir die spezielle Ausgabe der Diskriminanzanalyse.

Diskriminanzanalyse fiir D

Gruppe1 Gruppe2 gezahlte Zuordnung wahrscheinliche Zuordnung
Gruppenwerte D: -0.5 0.5 richtig falsch D>TM D<TM
Priors: 0.5 0.5 Gruppe1: 95 0 Gruppe1:| 9.27248E-05| 0.999907275
TrennmalR: 0.00000000 Gruppe2: 95 0 Gruppe2:| 0.999907275| 9.27248E-05
Name Umfang Mittelwert Varianz St.Abw.
Gruppe: 95| -0.466934941| 0.01785787| 0.133633342
Gruppe2: 95| 0.466934941| 0.013349087| 0.115538248
Summe: 190 0| 0.015603478| 0.124913884
F-Test: F_ratio: | 1.337759682| F_tab (.95): | 1.406395056|nicht signifikant

In diesem ersten Teil der Ausgabe ist das Trennmal TM berechnet, es werden die Zuordnung
gezdhlt und auf Basis einer Normalverteilung der Anteil der richtigen bzw. falschen Zuordnungen
berechnet. Das Trennmall berechnet sich fiir den Fall gleicher Varianzen nach

(- s+ (n, —1)s;

S2
p

n+n,—2
m, +m SZ T
' z 4 L In| =L
2 m—m, \ T,

™ =

und fiir den Fall ungleicher Varianzen nach
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a=t 1
i
h=-252 424
o, O
2 2
o=t M| F200
0y O 70,
~b+\b* -4 .
xl,2= “ TM der Wert zwischen 4y und 1,

2a

Deswegen wird der F-Test mit den Varianzen durchgefiihrt, um im giinstigen Fall die Gleichheit der
Varianzen annehmen zu diirfen und die einfachen Formel zu nutzen.

Der zweite Teil (Auszug) ist die wahrscheinliche Zuordnung einzelner Objekte zu den Clustern.

Zuordnung nach Wahrscheinlichkeiten (Detail)

Objekt D beobachtet D geschédtzt P(G1|Dhat) P(G2|Dhat) Zuordnung richtig?

2 -0.5| -0.58977805 1.00000000] 0.00000000 G1 1
3 -0.5| -0.60445649 1.00000000] 0.00000000 G1 1
4 -0.5| -0.62779025[ 1.00000000] 0.00000000 G1 1
6 -0.5| -0.34814464| 1.00000000] 0.00000000 G1 1
7 -0.5| -0.58521209 1.00000000] 0.00000000 G1 1
8 -0.5| -0.60584831| 1.00000000] 0.00000000 G1 1
9 -0.5| -0.37332376 1.00000000] 0.00000000 G1 1
10 0.5 -0.15603273 0.99991204| 0.00008796 G1 1

Die Zuordnungen berechnen sich fiir jede Gruppe:

und dann Bayes:

2.2.3 Zusammenfassung

Die Diskriminanzanalyse beantwortet die folgenden Fragen:

* Sind die Cluster tatsachlich trennbar?
Die folgende Grafik bestdtigt das gute Ergebnis des F-Test der ANOVA F=430.71194364 und einem
p-Wert = 0.00000000. Dies Ergebnis deckt sich mit dem Hotelling T*-Test in der Clusteranalyse.
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Beobachtung, Schatzung v. Index
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Die Grafik zeigt die perfekte Trennung der Cluster und auch kein einzelner Wert iiberschreitet das
Trennmal$.

*  Welche Variablen tragen zur Trennung bei?
Eine weitere Grafik mit den t_SE beantwortet diese Frage.

absolute t-Werte

Diagonal
Oben
Unten
Rechts
Links
Lange N

0 5 10 15

Nur die Variable Lange ist nicht signifikant, alle anderen Variablen tragen zur Trennung der Cluster
echte und gefalschte Banknoten bei.

* Wie zuverlassig ist die Zuordnung?

Die Tabelle der Zuordnungen zeigt ein eindeutiges Ergebnis: kein Objekt wurde falsch zugeordnet.
Aber man sollte berticksichtigen das 10 Objekte als Ausreier entfernt wurden. Fragen zu diesem
Sachverhalt konnen mit der Identifikationsanalyse und 5 neuen Banknoten beantwortet werden.
Eine wirklich sichere Aussage zu diesem Sachverhalt ist nur mit einem zweiten Datensatz, welcher
unter gleichen Bedingungen vermessen wurde, moglich.
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* Wie sicher ist die Identifikation neuer Objekte?
Um diese Frage zu beantworten berechnen wir die Diskriminanzwerte aller zehn Ausreifler plus
fiinf neuer falscher Banknoten. Das Ergebnis dieser Bewertung:

Objekt Liange  Links Rechts Unten Oben Diagonal D Banknote Zuordnung

1 214.8 131 | 131.1] 9 9.7 141 1-0.22039125|  echt richtig
5 215 129.6 | 129.7| 104 | 7.7 | 141.8 |-0.55509880| echt richtig
13 2152 130.8 | 1296 7.9 | 106 | 1414 |-0.55862387| echt richtig
40 2139 13031 129 [ 81 [ 9.7 | 141.3 |-0.63939154| echt richtig

70 2149 13021302 8 | 11.2 | 139.6 | 0.10305909 | echt FALSCH
103 214.9 130.3 | 130.1( 8.7 | 11.7 | 140.2 | 0.11720560 | gefélscht [ richtig
161 215.6 1301 [ 129.7 7.4 | 122 | 138.4 | 0.33010867 | gefalscht| richtig
167 2163 130.7 | 1304 10 [ 101 | 138.8 | 0.32027679 | gefélscht| richtig
171 2139 130.7 | 130.5( 8.7 | 11.5 | 137.8 | 0.64590742 | gefélscht [ richtig
180 2145 130.2 | 1304 [ 8.2 [ 11.8 | 137.8 | 0.64534161 | gefdlscht| richtig
201 2152 1304 | 130.1 10.1 | 11.6 | 139.8 | 0.36050035 | gefélscht [ richtig
202 2149 130.4 | 130.3 [ 10.7 [ 11.6 | 139.6 | 0.52768407 | gefalscht| richtig
203 2153 1304 | 1304 7.7 | 12 | 1399 | 0.11090930 | gefélscht [ richtig
204 2151 1306 | 1306 92 [ 11 138.8 | 0.42145909 | gefalscht| richtig
205 2149 1305|1302 [ 84 | 11.6 | 1384 | 0.42145909 | gefélscht [ richtig

Bis auf die echte Banknote 70, welche als ,,gefdlscht“ zugeordnet wurde, waren alle anderen Ban-
knoten korrekt klassifiziert. Dieses ist einem standardisierten Residuum von 4.1 zur Mitte des ech-
ten Clusters geschuldet. Wahrscheinlich bedingt durch die Gebrauchsspuren und damit ein herge-
henden Messfehlern. Eine echte Banknote falsch zu klassifizieren hat keine grofSen Konsequenzen.

Die Diskriminanzanalyse bildet damit das strukturpriifende Gegenstiick zur strukturbildenden Clus-
teranalyse.

2.3 Identifikationsanalyse (neues Objekt priifen)

Bei der Identifikationsanalyse wird ein Referenz-Cluster oder auch mehrere ausgewdhlt und jedem
Referenz-Cluster wird ein neuer Objektvektor xn., hinzugefiigt. Wir haben eine spezielle Diskrimi-
nanzanalyse, welche als Identfikationsanalyse bezeichnet wird. Der Datensatz besteht aus dem
Referenz-Cluster und einem Cluster nur aus einem Objekt bestehenden Datensatz.

Ziel der Analyse ist zu priifen, ob dieses neue Objekt zum Referenz-Cluster gehort oder nicht
gehort. Dieses entscheidet die Priifung des Diskriminanzmodell mit dem globalen F-Test. Ist das
Ergebnis nicht signifikant, dann wird die Nullhypothese bestétigt und das neue Objekt gehort zur
Referenz. Lautet dagegen das Ergebnis signifikant, wird die Nullhypothese abgelehnt und das neue
Objekt gehort nicht zum Referenz-Cluster. In diesem Fall m6chte man wissen, welche Variablen zu
einem signifikanten Ergebnis gefiihrt haben. Dies sieht man an der Signifikanzpriifung der Diskri-
minazkoeffizienten.

Will man ein Objekt (Ausreifer, einzelnes neues Objekt) beurteilen, dann wird man wie folgt Vor-
gehen: Die Messwerte xi, ..., x, werden in den bestehenden Referenzdatensatz eingefiigt. Die Fis-
her-Codierung wird angepasst:

* bestehende Gruppe: c1=1/(n+1)
* neue Beobachtung: c2=—n/(n+1)
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Die Regressionsfunktion wird mit dem ergidnzten Objekt neu berechnet. Anhand des globalen F-
Test kann nun entschieden werden, ob das Objekt zur Referenz gehort oder nicht.

* Nullhypothese Hy angenommen: Unterschied zwischen neuem Objekt und Referenz ist zufillig.
* Nullhypothese H, abgelehnt: Unterschied zwischen neuem Objekt und Referenz ist signifikant.

echt gefalscht
F-Test p-Wert MD*2 p-Wert MD

103 3.2463919 0.0062303| 16.8804918] 0.0097326] 1.6914613| 0.1323014
161 11.3259647)  0.0000000| 40.7028759| 0.0000003] 3.3146923| 0.0054285
167 9.9995435  0.0000000| 37.8555115] 0.0000012] 5.4538279| 0.0000765
171 16.2781142)  0.0000000| 49.1880778| 0.0000000] 5.6179482| 0.0000556
180 15.4501640]  0.0000000( 47.9626359| 0.0000000] 3.3055206 0.0055299
201 7.4199676 0.0000019| 31.3461022] 0.0000218] 0.5576375| 0.7628209
202 10.9057812]  0.0000000] 39.8326459| 0.0000005f 0.2605826] 0.9536891
203 3.9548907( 0.0014940| 19.7890402] 0.0030192] 1.9354937| 0.0836623
204 8.4704539 0.0000003| 34.1708793] 0.0000062] 1.1053400( 0.3656499
205 9.6804446( 0.0000000| 37.1245359] 0.0000017| 1.2651133| 0.2815898

Zur Interpretation, die ersten fiinf Banknoten sind echte Banknoten welche als Ausreiler in der Clus-
teranalyse gefunden wurden. Alle diese Banknoten wurden als Ausreifler bestdtigt, sie gehdren weder
zu den echten noch zu den gefélschten Banknoten. Die Banknote 70 wiirde bei einer Klassifikation
falsch zugeordnet werden. Die Ursache ist wahrscheinlich ein Messfehler in der Diagonalen Xs.

Die weiteren fiinf Banknoten sind gefédlschte Banknoten, wobei die Banknote 103 kein Ausreiller
ist und richtig zugeordnet wird. Die restlichen Banknoten kénnen nicht zu geordnet werden und
sind somit als Ausreiller bestétigt.

Die letzen fiinf Banknoten sind neue gefédlschte Banknoten, welche alle richtig zugeordnet werden
konnten.

Ergdnzend muss gesagt werden, man kann ein neues Objekt auch mit Hilfe der Mahalanobis-Di-
stanz MD? bewerten, signifikante Werte werden rot ausgegeben.

2.4 Zusammenfassung der Ergebnisse
Im Banknotenbeispiel zeigt sich typischerweise:

* Sehr klare Trennung der Diskriminanzwerte.

¢ Geringe Uberlappung der Verteilungen.

* Hohe Trefferquote.

* Eine bis drei Variablen dominieren die Trennung.
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Die Analyse bestétigt somit: Die Clusteranalyse hat eine reale, physikalisch interpretierbare Klas-
senstruktur entdeckt. Doch erst die Kombination aus:

* Clusteranalyse (strukturbildend)
* Diskriminanzanalyse (strukturpriifend)
* Identifikationsanalyse (neue Objekte)

ermoglicht eine objektive Qualitdtskontrolle, automatische Klassifikation und statistisch abgesi-
cherte Entscheidungen. Im Fall der Banknoten heif8t das: Eine neue Banknote kann anhand weniger
geometrischer Messgroen mit quantifizierter Sicherheit als echt oder gefalscht identifiziert werden.
Dieses Beispiel zeigt den vollstindigen Analysezyklus:

* Explorative Clusteranalyse

* Bestdtigung durch Diskriminanzanalyse

* Ableitung einer Trennfunktion

* Wahrscheinlichkeitsbasierte Klassifikation
* Identifikation neuer Objekte

Damit wird aus einer rein beschreibenden Analyse ein entscheidungsféhiges statistisches Verfahren.
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