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 1  Clusteranalyse
Man unterscheidet  in der  Statistik zwischen strukturprüfenden und strukturbildenden Verfahren. 
Während strukturprüfende Verfahren bestehende Hypothesen überprüfen, dienen strukturbildende 
Verfahren der explorativen Analyse unbekannter Datenstrukturen. Die Clusteranalyse gehört zu den 
strukturbildenden Verfahren.

Weiterhin wird zwischen Clusterformation und der eigentlichen Clusteranalyse unterschieden.

• Clusterformation: 
Will man beispielsweise anhand von Körpermaßen Konfektionsgrößen festlegen, die für mög-
lichst viele Kunden eine passende Auswahl ermöglichen, so ist die Clusterformation die geeig-
nete Methode. In diesem Fall wird die Anzahl der Konfektionsgrößen (Cluster) vorgegeben und 
die Objekte werden diesen Gruppen möglichst optimal zugeordnet.

• Clusteranalyse: 
In der Clusteranalyse werden hingegen keine Gruppen vorgegeben. Ziel ist es, durch Bündelung 
der Objekte natürliche Gruppenstrukturen zu identifizieren. Dabei gilt, dass die Objekte inner-
halb eines Clusters möglichst ähnlich sein sollen, während sich die Cluster untereinander mög-
lichst deutlich unterscheiden. Typische Anwendungsfelder sind unter anderem die Segmentie-
rung von Internetnutzern, die Kundensegmentierung oder die Bildung von Innovationstypen.

In vielen industriellen und sicherheitsrelevanten Anwendungen besteht die Aufgabe darin, anhand 
mehrerer kontinuierlicher Messgrößen unterschiedliche Objektklassen zu identifizieren. Ein klassi-
sches Beispiel ist die Gruppierung von Banknoten auf Basis geometrischer Merkmale. Führt die Clus-
terbildung in diesem Fall zu einer klaren Trennung der Objekte, so nährt dies den Verdacht, dass die 
Unterschiede der Cluster auf echte und gefälschte Banknoten zurückgeführt werden können.

Die vorliegende Aufgabe ist typisch für eine Clusteranalyse mit intervallskalierten Variablen:

• mehrere metrische Merkmale
• unbekannte Klassenstruktur
• mögliche Ausreißer
• korrelierte Variablen

Ziel ist es, aus einer multivariaten Datenmatrix automatisch natürliche Gruppen zu identifizieren 
und diese statistisch korrekt zu validieren.

In diesem Kapitel wird eine vollständige Clusteranalyse mit dem Ward-Algorithmus und einer Ver-
besserung mittels  k-Means-Methodik,  der  euklidischen Distanz,  der  Mahalanobis-Distanz,  einer 
automatischen Bestimmung der optimalen Clusterzahl sowie einer statistischen Ausreißererkennung 
durchgeführt. 
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 1.1  Voraussetzungen der Clusteranalyse
Wichtige Voraussetzungen, die bei der Durchführung einer Clusteranalyse beachtet werden sollten, sind:

• Die Analyse kann für unterschiedliche Datentypen (kategoriale und metrische Daten) genutzt 
werden. Hierzu wurden zahlreiche Ähnlichkeits- und Distanzmaße (Proximitätsmaße) definiert. 
OQM-Stat  beschränkt  sich bewusst  auf  metrische Daten mit  den Distanzmaßen „euklidische 
Distanz“ und „Mahalanobis-Distanz“.

• Fehlende Werte und Ausreißer sollten vorab beseitigt werden, da sie die Analyseergebnisse deut-
lich verzerren können. OQM-Stat nutzt deshalb einen statistischen Ausreißertest, bei dem Ausrei-
ßer bei der Clusterbildung nicht berücksichtigt werden. Die Ausreißer können jedoch weiterhin 
dargestellt und ihr Ursprung beurteilt werden.

• Weisen die verwendeten Variablen große Unterschiede bezüglich ihres Wertebereichs auf,  so 
sollten  diese  auf  ein  einheitliches  Niveau  transformiert  werden.  Die  Mahalanobis-Distanz 
berücksichtigt dies automatisch durch die sogenannte Whitening-Transformation.

Bei der Berechnung der Cluster wird nach bestimmten Regeln entschieden, wie die Objekte zu 
Gruppen zusammengefasst werden. Das Ergebnis dieses Prozesses hängt nicht nur von der Wahl 
des Clustering-Algorithmus ab,  sondern auch davon, wie die Distanzen zwischen den Objekten 
bestimmt werden.

Deshalb werden in OQM-Stat ausschließlich der Ward-Algorithmus und ein partitionierendes k-
Means-Verfahren zur Verfeinerung der Gruppenzugehörigkeit eingesetzt.

Die hier eingesetzte Methodik setzt voraus:

• metrisch skalierte Variablen
• sinnvolle Abstandsdefinition
• Mittelwerte und Varianzen sind interpretierbar
• Korrelationen zwischen Variablen möglich

Die Daten liegen auf Intervallskalenniveau vor und erfüllen damit die Voraussetzungen für eine 
multivariate Clusteranalyse.

 1.2  Distanzmaße in der Clusteranalyse
Ein zentrales Element jeder Clusteranalyse ist die Definition eines geeigneten Distanzmaßes. Das 
Distanzmaß bestimmt, wie ähnlich oder unähnlich sich zwei Objekte im Merkmalsraum sind. Die 
Qualität der resultierenden Cluster hängt wesentlich von der Wahl dieses Maßes ab.

In der Literatur wurden zahlreiche Proximitätsmaße für unterschiedliche Skalenniveaus entwickelt. 
Für metrische Daten haben sich insbesondere die euklidische Distanz und die Mahalanobis-Distanz 
etabliert.

OQM-Stat  beschränkt  sich  bewusst  auf  diese  beiden  Distanzmaße,  da  sie  für  intervallskalierte 
Daten mathematisch fundiert, numerisch stabil und in der industriellen Praxis bewährt sind.
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 1.2.1  Euklidische Distanz

Die euklidische Distanz ist das klassische geometrische Distanzmaß im p-dimensionalen Raum. Für 
zwei Beobachtungsvektoren

lautet sie:

Geometrisch entspricht diese Distanz der Länge der Verbindungsstrecke zwischen zwei Punkten im 
p-dimensionalen Merkmalsraum. Die euklidische Distanz besitzt folgende Eigenschaften:

• sie ist nicht negativ:

• sie ist symmetrisch:

• sie erfüllt die Dreiecksungleichung
• sie ist invariant gegenüber Translationen

Trotz ihrer einfachen geometrischen Interpretation weist die euklidische Distanz einige Schwächen 
auf, die in der Praxis beachtet werden müssen:

• Unterschiedliche Skalen der Variablen
Variablen mit großem Wertebereich dominieren die Distanzberechnung.

• Korrelationen zwischen Variablen
Stark korrelierte Variablen gehen mehrfach in die Distanz ein und verfälschen damit die tatsächli-
che Struktur.

• Unterschiedliche Varianzen
Variablen mit hoher Streuung erhalten ein größeres Gewicht als solche mit geringer Streuung.

Diese Effekte können zu verzerrten Clusterstrukturen führen, insbesondere bei technisch oder phy-
sikalisch gemessenen Größen. 
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 1.2.2  Standardisierung und Whitening

Um die genannten Nachteile zu kompensieren, werden in der Praxis häufig Transformationsverfah-
ren eingesetzt. Eine einfache Möglichkeit ist die Standardisierung jeder Variablen:

mit 𝜇𝑘 = Mittelwert der k-ten Variablen
𝜎𝑘 = Standardabweichung der k-ten Variablen

Diese Transformation führt jedoch nur zu einer Skalierung, berücksichtigt aber keine Korrelationen 
zwischen  den  Variablen.  Eine  vollständige  Lösung  bietet  das  sogenannte  Whitening,  bei  dem 
zusätzlich die Kovarianzstruktur eliminiert wird.

 1.2.3  Mahalanobis-Distanz

Die Mahalanobis-Distanz wurde von P. C. Mahalanobis eingeführt und stellt eine kovarianzgewich-
tete Distanz dar. Sie berücksichtigt sowohl die Skalierung als auch die Korrelationen der Variablen.

Für zwei Beobachtungen  und  lautet sie:𝑥𝑖 𝑥𝑗

mit Σ = Kovarianzmatrix der Daten.

Die Mahalanobis-Distanz misst die Distanz zweier Punkte relativ zur Streuung der Datenwolke. 
Punkte entlang einer stark gestreckten Hauptachse gelten als näher beieinander als Punkte mit glei-
cher euklidischer Distanz in Richtung geringer Varianz. Geometrisch beschreibt die Mahalanobis-
Distanz Ellipsen (bzw. Hyperellipsoide) konstanter Dichte im Merkmalsraum. 

 1.2.4  Whitening-Transformation

Die Mahalanobis-Distanz kann durch eine lineare Transformation auf eine euklidische Distanz im 
transformierten Raum zurückgeführt werden. Sei die Kovarianzmatrix gegeben durch die Cholesky-
Zerlegung:

Dann gilt für den transformierten Vektor:

mit  = Mittelwertvektor.𝜇

Im transformierten Raum gilt dann:
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und für einen Punkt:

Die Mahalanobis-Distanz entspricht somit der euklidischen Norm im whitened space. Die Mahala-
nobis-Distanz bietet entscheidende Vorteile gegenüber der euklidischen Distanz:

• automatische Skalierung aller Variablen
• vollständige Berücksichtigung von Korrelationen
• physikalisch sinnvolle Gewichtung
• objektive Ausreißerdefinition
• direkte Verbindung zur multivariaten Normalverteilung

Sie ist daher das bevorzugte Distanzmaß für multivariate Qualitäts-, Mess- und Prozessdaten.

 1.2.5  Distanzmaß in OQM-Stat

OQM-Stat unterstützt zwei Betriebsarten:

• Euklidischer Modus:
klassische Ward-Clusterung im Originalraum

• Mahalanobis-Modus:
• Ward-Clusterung im whitened space (entspricht Mahalanobis-Distanzen im Originalraum)

Die Whitening-Transformation erfolgt automatisch auf Basis der Stichprobenkovarianzmatrix. Opti-
onal  kann  eine  robuste  Kovarianzschätzung  verwendet  werden.  Damit  wird  sichergestellt,  dass 
sowohl skalierungs- als auch korrelationsbedingte Verzerrungen ausgeschlossen werden.

 1.3  Der Ward-Algorithmus (hierarchische Clusteranalyse)
Der Ward-Algorithmus ist ein  hierarchisches, agglomeratives Clustering-Verfahren und gehört 
zu den am häufigsten eingesetzten Methoden der Clusteranalyse für metrische Daten. Er zeichnet 
sich durch eine besonders stabile und kompakte Clusterbildung aus und wird daher häufig in indus-
triellen und technischen Anwendungen eingesetzt.

Im Gegensatz zu partitionierenden Verfahren, bei denen die Anzahl der Cluster vorab festgelegt 
werden  muss,  erzeugt  der  Ward-Algorithmus  eine  vollständige  Hierarchie  der  Datenstruktur. 
Dadurch steht dem Anwender die gesamte Fusionshistorie zur Verfügung, und die optimale Cluster-
zahl kann im Nachhinein bestimmt werden.
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 1.3.1  Grundprinzip des Ward-Verfahrens

Der Ward-Algorithmus ist ein agglomeratives Verfahren, das schrittweise ausgehend von Einzelele-
menten größere Cluster bildet:

• Zu Beginn bildet jede Beobachtung ein eigenes Cluster.
• In jedem Schritt werden genau die beiden Cluster fusioniert, deren Vereinigung den geringsten 

Zuwachs der Gesamtstreuung verursacht.
• Dieser Prozess wird fortgesetzt, bis alle Objekte in einem einzigen Cluster vereinigt sind.

Das  Verfahren  minimiert  in  jedem Fusionsschritt  den  Anstieg  der  Within-Cluster-Streuquadrat-
summe (SSE). Die Gesamtstreuung der Daten lässt sich zerlegen in:

mit  = Gesamtstreuung (Total Sum of Squares)𝑇
 = Within-Cluster-Streuung𝑊

  = Between-Cluster-Streuung𝐵

Die Gesamtstreuung lautet:

Die Within-Cluster-Streuung ist:

und die Between-Cluster-Streuung:

mit  = Anzahl der Cluster𝑘
𝑛𝑐  = Größe des Clusters
𝜇𝑐 = Schwerpunkt des Clusters

 = Gesamtschwerpunkt𝜇

 1.3.2  Fusionskriterium nach Ward

Beim Ward-Verfahren wird in jedem Schritt jene Fusion gewählt, die den geringsten Anstieg der 
Within-Cluster-Streuung verursacht. Für zwei Cluster 𝐶𝑎 und 𝐶𝑏 ergibt sich der Streuungszuwachs:

mit ,  = Größen der beiden Cluster𝑛𝑎 𝑛𝑏
,  = deren Zentren𝜇𝑎 𝜇𝑏
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Diese Formel zeigt, dass sowohl der Abstand der Clusterzentren als auch deren Größen in die Fusi-
onsentscheidung eingehen. Geometrisch bedeutet das Ward-Kriterium:

• Es werden bevorzugt Cluster mit naheliegenden Schwerpunkten fusioniert.
• Große Cluster werden stärker gewichtet als kleine.
• Die entstehenden Cluster sind möglichst kompakt und kugelförmig.

Im Mahalanobis-Modus erfolgt die Berechnung im whitened space, sodass die Clusterbildung kova-
rianzbereinigt erfolgt.

 1.3.3  Dendrogramm

Das Ergebnis des Ward-Verfahrens ist ein Dendrogramm, das die gesamte Fusionshierarchie gra-
fisch darstellt.

• Auf der horizontalen Achse stehen die Objekte oder Cluster.
• Auf der vertikalen Achse ist der Fusionsabstand (Streuungszuwachs) dargestellt.
• Jeder Knoten repräsentiert eine Fusion zweier Cluster.

Durch das Setzen einer horizontalen Schnittlinie im Dendrogramm kann eine gewünschte Clus-
teranzahl bestimmt werden.

 1.3.4  Vorteile des Ward-Algorithmus

Der Ward-Algorithmus besitzt mehrere Vorteile, die ihn für industrielle Anwendungen besonders 
geeignet machen:

• Er liefert sehr stabile und reproduzierbare Cluster.
• Die Cluster sind kompakt und gut interpretierbar.
• Die Methode ist robust gegenüber Rauschen.
• Die gesamte Hierarchie bleibt verfügbar.
• Keine Vorab-Festlegung der Clusterzahl erforderlich.
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Dadurch  eignet  sich  der  Ward-Algorithmus  hervorragend  für  explorative  Analysen  komplexer 
Messdaten.

Bezüglich des Ward-Verfahrens sei zudem darauf hingewiesen, dass eine Untersuchung von S. Berg 
(1981) gezeigt hat, dass das Ward-Verfahren im Vergleich zu anderen Fusionsalgorithmen in den 
meisten Fällen sehr gute Partitionen liefert und die Objekte mit hoher Zuverlässigkeit den „richti-
gen“ Gruppen zuordnet. Das Ward-Verfahren kann somit als ein sehr leistungsfähiger und robuster 
Fusionsalgorithmus angesehen werden.

 1.3.5  Ward-Algorithmus in OQM-Stat

OQM-Stat implementiert den Ward-Algorithmus vollständig numerisch stabil und effizient. Je nach 
gewähltem Distanzmaß arbeitet das Verfahren:

• im Originalraum mit euklidischer Distanz
• im whitened space mit Mahalanobis-Distanz

Dabei werden folgende Schritte automatisch durchgeführt:

• Berechnung der Distanzmatrix
• Hierarchische Fusion nach Ward
• Aufbau der vollständigen Hierarchie
• Erzeugung des Dendrogramms
• Speicherung aller Fusionsschritte

Optional kann auf Basis der Ward-Zentren ein k-Means-Verfahren zur Verfeinerung der Clusterzu-
ordnung gestartet werden. Das Ward-Verfahren verbindet die Vorteile hierarchischer Verfahren mit 
einer klaren statistischen Interpretation. Es stellt  damit eine ideale Grundlage für eine objektive 
Clusterbildung dar. In Verbindung mit der Mahalanobis-Distanz entsteht ein Verfahren, das sowohl 
geometrisch als auch statistisch optimal an die Struktur der Daten angepasst ist.

 1.4  Bestimmung der optimalen Clusterzahl
Ein zentrales Problem der Clusteranalyse besteht in der Bestimmung der „richtigen“ Anzahl von 
Clustern. Während hierarchische Verfahren wie der Ward-Algorithmus eine vollständige Hierarchie 
erzeugen, liefern sie zunächst keine eindeutige Entscheidung über die optimale Clusterzahl.

Um aus der Hierarchie eine sinnvolle Partition abzuleiten, müssen zusätzliche Kriterien herange-
zogen werden, welche die Trennschärfe der Cluster bewerten. In OQM-Stat wird hierzu das Calin-
ski-Harabasz-Kriterium (CH-Kriterium) eingesetzt.

 1.4.1  Grundidee der Clusterzahlbestimmung

Die Clusteranalyse ist  ein exploratives Verfahren. Im Gegensatz zu klassischen Hypothesentests 
existiert keine a-priori bekannte Gruppenstruktur, die überprüft werden könnte. Stattdessen wird 
versucht, aus den Daten selbst eine natürliche Gruppierung zu extrahieren.

Dabei steht man vor der grundlegenden Frage:

• Wie viele Cluster sind in den Daten tatsächlich enthalten?

13
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Eine triviale Lösung wäre, jedes Objekt als eigenes Cluster zu betrachten. Ebenso trivial wäre ein 
einziges Cluster für alle Objekte. Beide Lösungen sind jedoch inhaltlich bedeutungslos. Gesucht ist 
daher eine Clusterzahl, bei der:

• die Objekte innerhalb der Cluster möglichst ähnlich sind.
• sich die Cluster untereinander möglichst deutlich unterscheiden.

Wie bereits gezeigt, lässt sich die Gesamtstreuung der Daten zerlegen in:

mit  = Gesamtstreuung𝑇
𝑊𝑘 = Streuung innerhalb der Cluster für  Cluster𝑘
𝐵𝑘 = Streuung zwischen den Clustern für  Cluster𝑘

Mit wachsender Clusterzahl nimmt die Streuung innerhalb der Cluster ab, während die Streuung 
zwischen den Clustern zunimmt. Bei sehr vielen Clustern wird 𝑊𝑘 sehr klein, jedoch verliert die 
Clusterlösung dann ihre interpretierbare Bedeutung. Ziel ist es daher, einen Kompromiss zwischen 
guter Trennung und sinnvoller Gruppierung zu finden.

 1.4.2  Calinski-Harabasz-Kriterium

Das Calinski-Harabasz-Kriterium (auch Varianzquotient  genannt)  wurde 1974 von Calinski  und 
Harabasz vorgeschlagen und gehört zu den am häufigsten eingesetzten Kriterien zur Bestimmung 
der optimalen Clusterzahl.

Es ist definiert als:

mit  = Anzahl der Cluster𝑘
 = Anzahl der Objekte𝑛
𝐵𝑘 =  Streuung zwischen den Clustern
𝑊𝑘 =  Streuung innerhalb der Cluster

Das Kriterium ist somit ein normierter Quotient aus:

• mittlerer Streuung zwischen den Clustern pro Freiheitsgrad
• mittlerer Streuung innerhalb der Cluster pro Freiheitsgrad

Ein hoher CH-Wert bedeutet:

• große Trennung zwischen den Clustern
• geringe Streuung innerhalb der Cluster

Das Maximum von ( ) wird als optimale Clusterzahl 𝐶𝐻 𝑘 𝑘∗ interpretiert:

14
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Die benötigten Größen lauten:

Gesamtmittelwert:

Clusterzentren:

Within-Cluster-Streuung:

Between-Cluster-Streuung:

Diese Zerlegung ist identisch zur Varianzanalyse und besitzt eine klare statistische Interpretation.

 1.4.3  CH-Kriterium in OQM-Stat

OQM-Stat berechnet das CH-Kriterium für alle Clusterzahlen im Bereich:

Der Anwender kann diesen Bereich explizit vorgeben. Standardmäßig wird ein sinnvoller Bereich 
gewählt, der von der Stichprobengröße abhängt. Die CH-Werte werden tabellarisch ausgegeben und 
zusätzlich grafisch dargestellt. Das Maximum markiert die empfohlene Clusterzahl. Optional kann 
der Anwender das CH-Kriterium deaktivieren und die Clusterzahl manuell vorgeben. Wie jedes 
streuungsbasierte Kriterium besitzt auch das CH-Kriterium Einschränkungen, insbesondere bei klei-
nen Stichprobenumfängen.

Problematisch wird das CH-Kriterium insbesondere bei:

• sehr kleinen Stichproben (z. B. n < 30)
• geringer Dimensionalität
• schwacher oder kontinuierlicher Struktur
• stark schiefen Verteilungen
• Vorliegen eines kontinuierlichen Gradienten anstelle echter Gruppen

In diesen Fällen kann es zu folgenden Effekten kommen:

• flache CH-Kurven ohne ausgeprägtes Maximum
• instabile Maxima bei zufälligen Schwankungen

15
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• überoptimistische Bewertung kleiner Clusterzahlen
• numerische Instabilitäten bei sehr kleinen Wk

Beispiel: Berufsdatensatz

 Der Datensatz mit 15 Berufen, Einkommen und Markenbewusstsein stellt ein typisches Grenzbei-
spiel dar:

• sehr kleine Stichprobe
• nur zwei Dimensionen
• eher kontinuierlicher sozioökonomischer Gradient
• keine natürliche Gruppierung

In solchen Fällen existieren keine echten Cluster im statistischen Sinne. Das CH-Kriterium liefert 
zwar mathematische Werte,  diese besitzen jedoch keine inhaltlich belastbare Interpretation.  Die 
Clusteranalyse erzeugt hier lediglich eine künstliche Segmentierung eines kontinuierlichen Merk-
malsraums.

Bei kleinen Datensätzen sollte das CH-Kriterium daher nur unterstützend verwendet werden. In die-
sen Fällen ist eine inhaltliche Interpretation zwingend erforderlich. Empfohlen wird:

• Begrenzung des Suchbereichs auf wenige Cluster (z. B. k = 2 oder k = 3)
• grafische Analyse mittels Scatterplots
• Beurteilung der Trennschärfe
• Plausibilitätsprüfung anhand fachlicher Kriterien

Die Clusteranalyse wird hier zu einem explorativen Hilfsmittel und nicht zu einem automatischen 
Klassifikationswerkzeug.

 1.4.4  Einordnung des CH-Kriteriums

In der Literatur wurden eine Vielzahl statistischer Kriterien entwickelt, die unter dem Begriff der 
sogenannten Stopping Rules zusammengefasst werden. Diese liefern statistische und damit weitge-
hend objektive Anhaltspunkte zur Bestimmung der optimalen Clusterzahl bei Anwendung hierarchi-
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scher Clusterverfahren. Ziel dieser Stopping Rules ist es, aus der Fusionshierarchie jene Clusterzahl 
zu bestimmen, die der „wahren“ Gruppenstruktur der Daten möglichst nahekommt.

Im  Rahmen  einer  umfangreichen  Simulationsstudie  untersuchten  Milligan  und  Cooper  (1985) 
insgesamt  30  solcher  Stopping  Rules.  Die  Autoren  generierten  Datensätze  mit  unterschiedlich 
trennscharfen Clusterstrukturen (mit 2 bis 5 Clustern) und testeten anschließend, inwieweit ver-
schiedene hierarchische Verfahren – darunter Single-Linkage, Complete-Linkage, Average-Linkage 
und Ward – in der Lage waren, die vorgegebene wahre Gruppenzahl korrekt zu identifizieren.

Die Auswertung zeigte, dass das Kriterium von Calinski und Harabasz unter allen untersuchten 
Stopping Rules die beste Leistungsfähigkeit aufwies. In über 90 % der untersuchten Fälle konnte 
mit dem Calinski-Harabasz-Kriterium die wahre Clusterstruktur korrekt erkannt werden.

Damit besitzt das CH-Kriterium eine hervorragende empirische Absicherung und kann als eines der 
leistungsfähigsten und zuverlässigsten Verfahren zur Bestimmung der optimalen Clusterzahl  bei 
hierarchischen  Clusteranalysen  angesehen  werden.Das  Calinski-Harabasz-Kriterium ist  ein  leis-
tungsfähiges Werkzeug zur automatischen Bestimmung der Clusterzahl bei ausreichend großen und 
strukturierten Datensätzen. In industriellen Anwendungen mit mehreren hundert oder tausend Beob-
achtungen liefert es in der Regel sehr stabile und reproduzierbare Ergebnisse.

Bei  kleinen Stichproben ersetzt  es  jedoch nicht  die  fachliche  Interpretation  und sollte  stets  im 
Zusammenhang mit grafischen Darstellungen und inhaltlicher Expertise betrachtet werden.

 1.5  Statistische Ausreißererkennung mit Mahalanobis-Distanz
In multivariaten Datensätzen treten häufig Beobachtungen auf, die nicht zur eigentlichen Daten-
struktur gehören. Solche Ausreißer können unterschiedliche Ursachen haben:

• Messfehler
• Eingabefehler
• fehlerhafte Sensorik
• besondere Prozesszustände
• echte Sonderfälle

Ausreißer können die Clusterbildung erheblich verzerren und führen häufig zu instabilen oder ver-
fälschten  Clusterlösungen.  Eine  statistisch  fundierte  Ausreißererkennung  ist  daher  ein  zentraler 
Bestandteil jeder robusten Clusteranalyse.

In univariaten Analysen werden Ausreißer meist über z-Werte oder Boxplot-Kriterien identifiziert. 
Diese Methoden berücksichtigen jedoch nur eine einzelne Variable.

In multivariaten Datensätzen können jedoch Beobachtungen auftreten, die in keiner einzelnen Vari-
able auffällig sind, aber im Merkmalsraum dennoch weit von der Datenwolke entfernt liegen. Sol-
che Punkte werden als multivariate Ausreißer bezeichnet.

Zur Identifikation multivariater Ausreißer ist daher ein Distanzmaß erforderlich, das die gesamte 
Kovarianzstruktur der Daten berücksichtigt. Das geeignete Distanzmaß zur Identifikation multivari-
ater Ausreißer ist die Mahalanobis-Distanz:
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mit  = Beobachtungsvektor𝑥
 = Mittelwertvektor𝜇

Σ = Kovarianzmatrix

Die Mahalanobis-Distanz misst die normierte Entfernung eines Punktes vom Zentrum der Daten-
wolke. Unter der Annahme einer multivariaten Normalverteilung gilt:

mit  = Anzahl der Dimensionen.𝑝

Damit lässt sich ein objektiver statistischer Ausreißertest formulieren:

Ein Punkt gilt als Ausreißer, wenn

wobei  = Konfidenzniveau (z. B. 0.99)𝛼

Wie bereits gezeigt, kann die Mahalanobis-Distanz über eine Whitening-Transformation auf eine 
euklidische Norm im transformierten Raum zurückgeführt werden:

Dann gilt:

Im whitened space liegen die Daten kugelförmig verteilt um den Ursprung. Ausreißer erscheinen als 
Punkte mit besonders großem Abstand zum Zentrum.

 1.5.1  Ausreißerbehandlung in OQM-Stat

OQM-Stat  verwendet  standardmäßig  eine  Mahalanobis-basierte  Ausreißererkennung  mit  Chi²-
Schwellenwert. Das Verfahren umfasst:

• Berechnung der Kovarianzmatrix
• Whitening-Transformation
• Berechnung der Mahalanobis-Distanzen
• Vergleich mit Chi²-Quantil
• Markierung statistischer Ausreißer

Ausreißer werden bei der Clusterbildung ausgeschlossen, können jedoch weiterhin grafisch darge-
stellt und in der Analyse ausgewertet werden.
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Die Trennung von regulären Beobachtungen und Ausreißern ist entscheidend für die Qualität der 
Clusterlösung:

• Ausreißer verzerren Zentren
• sie beeinflussen die Distanzmatrix
• sie führen zu instabilen Fusionen
• sie können künstliche Cluster erzeugen

Durch die statistische Ausreißererkennung wird sichergestellt, dass die Clusteranalyse auf einer sta-
bilen, repräsentativen Datenbasis erfolgt. Die Chi²-basierte Ausreißererkennung setzt voraus:

• annähernde Multinormalität
• ausreichende Stichprobengröße
• stabile Kovarianzmatrix

Bei sehr kleinen Stichproben kann die Kovarianzschätzung instabil werden. In diesen Fällen sollte  
der Ausreißertest nur als Orientierungshilfe verwendet und stets grafisch überprüft werden.

 1.6  Refinement der Clusterzuordnung mittels k-Means-Verfahren
Der Ward-Algorithmus liefert  eine hierarchische Struktur der  Daten und erzeugt kompakte,  gut 
interpretierbare Cluster. Das Ergebnis basiert jedoch auf einer schrittweisen Fusion und ist damit 
nicht direkt auf eine globale Optimierung der Clusterzuordnung ausgerichtet.

Zur weiteren Verfeinerung der Gruppenzugehörigkeit kann daher ein partitionierendes Verfahren 
eingesetzt werden, das die Clusterzentren iterativ optimiert. Hierzu hat sich insbesondere das k-
Means-Verfahren bewährt.

In OQM-Stat wird das k-Means-Verfahren optional als Refinement-Stufe eingesetzt, wobei die vom 
Ward-Algorithmus ermittelten Clusterzentren als Startwerte verwendet werden.

 1.6.1  Grundprinzip des k-Means-Verfahrens

Das k-Means-Verfahren ist ein partitionierendes Clustering-Verfahren, bei dem die Anzahl der Clus-
ter  vorab festgelegt wird. Ziel ist es, die Objekte so auf die Cluster zu verteilen, dass die Summe𝑘  
der  quadratischen  Abstände  zu  den  jeweiligen  Clusterzentren  minimal  wird.  Gegeben  sei  eine 
Menge von Beobachtungen

Gesucht ist eine Partition in  Cluster 𝑘 𝐶1, …, 𝐶𝑘 mit Zentren 𝜇1, …, 𝜇𝑘, sodass folgende Zielfunktion 
minimiert wird:
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 Diese Größe wird als Within-Cluster-Streuquadratsumme bezeichnet. Das klassische k-Means-Ver-
fahren ein Iteratives Optimierungsverfahren besteht aus den folgenden Schritten:

• Initialisierung der Clusterzentren 𝜇1, …, 𝜇𝑘
• Zuordnung jedes Objekts zum nächstgelegenen Zentrum
• Neuberechnung der Clusterzentren als Mittelwerte der zugeordneten Punkte
• Wiederholung der Schritte 2 und 3 bis zur Konvergenz

Der Algorithmus konvergiert zu einem lokalen Minimum der Zielfunktion.

 1.6.2  Initialisierung durch Ward-Zentren

Ein bekanntes Problem des k-Means-Verfahrens besteht in seiner Abhängigkeit von der Initialisie-
rung. Ungünstige Startwerte können zu schlechten lokalen Minima führen.  Um dieses Problem zu 
vermeiden, verwendet OQM-Stat die vom Ward-Algorithmus ermittelten Clusterzentren als Initiali-
sierung. Diese Vorgehensweise besitzt mehrere Vorteile:

• sehr stabile Startwerte
• keine zufällige Initialisierung
• reproduzierbare Ergebnisse
• schnelle Konvergenz
• globale Struktur bereits berücksichtigt

Damit verbindet sich die hierarchische Struktur des Ward-Verfahrens mit der globalen Optimierung 
des k-Means-Verfahrens. Im euklidischen Modus basiert die Zuordnung auf der euklidischen Distanz:

Im Mahalanobis-Modus erfolgt die Zuordnung im whitened space:

Damit bleibt die kovarianzgewichtete Geometrie auch im k-Means-Refinement vollständig erhalten. 
Der k-Means-Algorithmus wird iteriert, bis sich die Zuordnung der Objekte nicht mehr ändert oder 
der Rückgang der Zielfunktion unter eine vorgegebene Schwelle fällt.

In OQM-Stat wird zusätzlich eine maximale Iterationszahl vorgegeben, um eine garantierte Ter-
minierung sicherzustellen.

 1.6.3  Ergebnis des Refinements

Das Ergebnis des k-Means-Refinements ist eine stabile Partition der Daten mit:

• finalen Clusterzentren
• finaler Gruppenzuordnung (NeuCluster)
• minimaler Within-Cluster-Streuung
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Diese Partition bildet die Grundlage für:

• grafische Darstellung
• Konfidenzellipsen
• statistische Tests
• weitere multivariate Analysen

Das k-Means-Refinement ist kein Ersatz für den Ward-Algorithmus, sondern eine sinnvolle Ergän-
zung. Während Ward die globale Struktur der Daten erfasst, sorgt k-Means für eine lokale Optimie-
rung  der  Gruppenzuordnung.  In  Kombination  entsteht  ein  sehr  leistungsfähiges  Verfahren,  das 
sowohl explorativ als auch statistisch fundiert ist. Diese Kombination aus hierarchischer und partiti-
onierender Clusteranalyse wird in der Literatur häufig als Best Practice empfohlen.

Auch das k-Means-Verfahren besitzt Einschränkungen:

• es setzt konvexe Clusterformen voraus
• es ist empfindlich gegenüber Ausreißern
• es minimiert nur eine quadratische Zielfunktion
• es liefert nur lokale Optima

Durch die vorgeschaltete Ward-Analyse und die statistische Ausreißererkennung werden diese Ein-
schränkungen in OQM-Stat jedoch weitgehend kompensiert.

 1.7  Grafische Analyse der Clusterstruktur
Die numerische Bestimmung von Clusterstrukturen liefert eine objektive und reproduzierbare Grup-
penzuordnung. Für die Interpretation der Ergebnisse ist jedoch eine grafische Darstellung unver-
zichtbar. Erst durch geeignete Visualisierungen wird die geometrische Struktur der Daten, die Lage 
der Clusterzentren, die Streuung innerhalb der Cluster sowie mögliche Überlappungen sichtbar. Die 
grafische Analyse erfüllt dabei mehrere Funktionen:

• Plausibilitätskontrolle der numerischen Clusterlösung
• visuelle Beurteilung der Trennschärfe
• Identifikation möglicher Grenzfälle
• Erkennung verbliebener Ausreißer
• Interpretation der Clustergeometrie

In OQM-Stat werden hierfür interaktive 2D-Streudiagramme mit Zentren, Ausreißern und Konfi-
denzellipsen bereitgestellt.

 1.7.1  Streudiagramme im Merkmalsraum

Für jede Variablenkombination ,  können zweidimensionale Streudiagramme erzeugt werden.𝑥𝑖 𝑥𝑗  
Jeder Punkt repräsentiert eine Beobachtung, farblich kodiert nach Clusterzugehörigkeit. Die Streu-
diagramme ermöglichen eine direkte visuelle Beurteilung:

• der Clusterlage im Merkmalsraum
• der internen Streuung
• der Überlappung zwischen Clustern
• der relativen Clustergröße
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Damit wird sichtbar, ob die numerische Clusterlösung geometrisch sinnvoll ist. Zusätzlich zu den 
Einzelpunkten werden die Clusterzentren in den Streudiagrammen dargestellt. Die Zentren entspre-
chen den Mittelwertvektoren der Cluster:

Die Darstellung der Zentren erlaubt:

• eine schnelle Orientierung im Merkmalsraum
• den Vergleich der relativen Lage der Cluster
• die Beurteilung der Trennung entlang einzelner Dimensionen

Die Zentren dienen zudem als Referenzpunkte für die Konfidenzellipsen.

 1.7.2  Konfidenzellipsen der Cluster

Zur  Visualisierung  der  Streuung  innerhalb  eines  Clusters  werden  Konfidenzellipsen  dargestellt. 
Diese basieren auf der zweidimensionalen Kovarianzmatrix des jeweiligen Clusters. Für ein Cluster 
mit Mittelwert  und Kovarianzmatrix Σ gilt für die Ellipse:𝜇

Dabei ist  das gewählte Konfidenzniveau (z. B. 95 %, 99 % oder 99.5 %). Alle Punkte innerhalb𝛼  
der Ellipse gehören mit Wahrscheinlichkeit  zur multivariaten Normalverteilung des Clusters. Die𝛼  
Ellipsen liefern wichtige geometrische Informationen:

• Größe der Ellipse → Streuung des Clusters
• Orientierung → Korrelation der Variablen
• Lage → Clusterzentrum
• Überlappung → Trennschärfe der Cluster

Stark überlappende Ellipsen deuten auf schlecht trennbare Cluster hin, während klar getrennte Ellipsen 
eine stabile Clusterstruktur anzeigen.

Wird die Clusteranalyse mit Mahalanobis-Distanzen durchgeführt, so erfolgt die eigentliche Clus-
terbildung im sogenannten whitened space. In diesem Raum sind alle Variablen standardisiert und 
entkorreliert, sodass die euklidische Distanz der Mahalanobis-Distanz im Originalraum entspricht. 
Die Whitening-Transformation lautet:

wobei μ der Mittelwertvektor,
 Σ die Kovarianzmatrix und
 L die untere Cholesky-Zerlegung von Σ ist.
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Die Clusterbildung, die Distanzberechnung sowie die Ausreißererkennung erfolgen vollständig im 
z-Raum. Für die grafische Darstellung der Ergebnisse ist jedoch der Originalraum entscheidend. 
Nur dort besitzen die Achsen eine inhaltliche Bedeutung (z. B. Länge, Breite, Randabstand etc.).  
Daher müssen für die Visualisierung:

• die Clusterzentren
• die Konfidenzellipsen
• die Distanzgeometrie

aus dem Whitening-Raum wieder in den Originalraum zurücktransformiert werden. Die Rücktrans-
formation erfolgt über:

Damit lassen sich:

• Zentren aus dem  -Raum korrekt in den Originalraum projizieren𝑧
• Ellipsenachsen geometrisch korrekt darstellen
• Clustergeometrien realitätsgetreu abbilden

Ohne diese Rücktransformation wären die dargestellten Ellipsen und Zentren zwar mathematisch 
korrekt,  aber  inhaltlich  nicht  interpretierbar,  da  sie  sich  in  einem künstlichen,  dimensionslosen 
Koordinatensystem befinden würden. Erst durch die Rücktransformation erhält man:

• Ellipsen in den physikalischen Einheiten der Messgrößen
• korrekte Streuungsgeometrie im Merkmalsraum
• interpretierbare Achsen
• fachlich nachvollziehbare Visualisierung

 1.7.3  Darstellung der Ausreißer

Ausreißer  werden in  den Streudiagrammen gesondert  dargestellt.  Sie  erscheinen typischerweise 
außerhalb der Konfidenzellipsen und besitzen große Mahalanobis-Distanzen. Die grafische Darstel-
lung erlaubt:

• visuelle Bestätigung der statistischen Ausreißererkennung
• Beurteilung möglicher Messfehler
• Identifikation besonderer Prozesszustände

Ausreißer werden bei der Clusterbildung ausgeschlossen, bleiben jedoch für die Analyse sichtbar. 
Nicht jeder Datensatz besitzt eine natürliche Clusterstruktur. Insbesondere bei kleinen Stichproben 
oder kontinuierlichen Gradienten können Streudiagramme dennoch wertvolle Informationen liefern.

In solchen Fällen zeigen die Streudiagramme häufig:

• kontinuierliche Trends
• schiefe Verteilungen
• Streuungsstrukturen
• Rangordnungen
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Die grafische Analyse dient dann primär der explorativen Datenanalyse und nicht der Bestätigung 
einer Clusterlösung.

 1.7.4  Grafische Analyse in OQM-Stat

OQM-Stat stellt ein interaktives Plot-Modul zur Verfügung, das folgende Elemente kombiniert:

• Streupunkte nach Clusterzugehörigkeit
• Clusterzentren
• statistische Ausreißer
• Konfidenzellipsen mit frei wählbarem Konfidenzniveau
• Achsenbeschriftungen und Titel
• Legende

OQM-Stat führt die Rücktransformation automatisch durch:

• Clusterzentren werden aus dem Whitening-Raum zurücktransformiert
• Konfidenzellipsen werden geometrisch korrekt im Originalraum konstruiert
• Streudiagramme werden stets im Originalraum dargestellt

Der Anwender arbeitet somit immer mit interpretierbaren Grafiken, unabhängig davon, ob Euklidi-
sche oder Mahalanobis-Distanzen verwendet werden. Die Grafiken werden direkt im Excel-Arbeits-
blatt erzeugt und können für Berichte, Präsentationen und Dokumentationen verwendet werden.

Die  grafische  Analyse  ist  ein  unverzichtbarer  Bestandteil  jeder  Clusteranalyse.  Sie  ergänzt  die 
numerischen Kriterien und ermöglicht eine inhaltliche Interpretation der Ergebnisse.

Nur durch die Kombination aus:

• numerischer Optimierung
• statistischer Validierung
• grafischer Plausibilitätsprüfung

entsteht eine belastbare und fachlich fundierte Clusterlösung.

 1.8  Statistische Validierung der Clusterlösung
Die eigentliche Clusterbildung stellt nur den ersten Schritt einer multivariaten Analyse dar. Eine 
Clusterlösung ist zunächst lediglich eine hypothesengenerierende Struktur. Erst durch eine anschlie-
ßende statistische Validierung lässt sich beurteilen, ob die gefundenen Gruppen tatsächlich signi-
fikant voneinander verschieden sind oder ob sie lediglich zufällige Artefakte der Datenstruktur dar-
stellen. Eine valide Clusteranalyse muss daher folgende Fragen beantworten:

• Sind die Cluster statistisch signifikant verschieden?
• Lassen sich die Gruppen multivariat voneinander trennen?
• Ist die gefundene Clusterstruktur stabil?
• Sind die Gruppen geometrisch kompakt und klar separiert?

OQM-Stat integriert hierzu eine vollständige statistische Validierung auf Basis multivariater Test-
verfahren.
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Hierarchische Clusterverfahren wie der Ward-Algorithmus liefern stets eine Partition – unabhängig 
davon, ob tatsächlich eine natürliche Gruppenstruktur existiert oder nicht. Insbesondere bei kleinen 
Stichproben, schwach separierten Gruppen oder hoch korrelierten Variablen besteht die Gefahr, dass 
scheinbar plausible Cluster rein zufällig entstehen. Daher ist eine statistische Überprüfung der Clus-
terlösung zwingend erforderlich. Eine valide Clusterlösung sollte folgende Eigenschaften besitzen:

• hohe Intra-Cluster-Homogenität
• hohe Inter-Cluster-Heterogenität
• signifikante multivariate Trennung
• stabile Zentren

Nur wenn diese Kriterien erfüllt sind, kann von einer belastbaren Klassifikation gesprochen werden.

 1.8.1  Multivariate Trennung: Hotelling-T²-Test (k = 2)

Liegt eine Zweiklassenlösung vor, so bietet sich der Hotelling-T²-Test als multivariates Analogon 
zum t-Test an. Der Test überprüft die Hypothese:

gegen

wobei 𝜇1 und 𝜇2 die multivariaten Mittelwertvektoren der beiden Cluster darstellen. Die Teststatistik 
lautet:

mit der gepoolten Kovarianzmatrix

Die T²-Statistik lässt sich in eine F-Verteilung überführen:

mit Freiheitsgraden:

Ein signifikanter p-Wert zeigt, dass sich die beiden Cluster multivariat signifikant unterscheiden. Die 
Cluster sind dann statistisch eindeutig trennbar. Gerade bei industriellen Klassifikationsproblemen (z. 
B. Gut-/Schlecht-Teile, Original/Fälschung, IO/NIO) ist dieser Test von zentraler Bedeutung.
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 1.8.2  Mehrklassenfall: Wilks-Lambda-Test (MANOVA)

Liegt eine Clusterlösung mit mehr als zwei Gruppen vor, so wird eine multivariate Varianzanalyse 
(MANOVA) durchgeführt. Als Teststatistik dient das Wilks-Lambda-Kriterium:

wobei  die Fehlervarianzmatrix (within-clusters) und𝐸
  die Hypothesenvarianzmatrix (between-clusters) bezeichnet.𝐻

Kleine Werte von Λ sprechen für eine starke Trennung der Gruppen. Die Teststatistik wird über eine 
Chi-Quadrat-Approximation ausgewertet:

mit Freiheitsgraden:

Ein signifikanter Wilks-Test zeigt, dass mindestens zwei Cluster multivariat signifikant voneinander 
verschieden sind. Die Clusterlösung ist damit statistisch abgesichert. Neben der rein statistischen 
Trennung  ist  auch  die  geometrische  Struktur  der  Cluster  von  Bedeutung.  OQM-Stat  bewertet 
hierzu:

• Intra-Cluster-Streuung (Within-SSE)
• Inter-Cluster-Streuung (Between-SSE)
• Distanz der Objekte zu ihren Zentren
• Überlappung der Konfidenzellipsen

Eine gute Clusterlösung zeichnet sich aus durch:

• kleine Within-SSE
• große Between-SSE
• kompakte Ellipsen
• geringe Überlappung

Diese Größen sind direkt interpretierbar und lassen sich grafisch nachvollziehen.

 1.8.3  Stabilität der Clusterlösung durch k-Means-Refinement

Der Ward-Algorithmus liefert eine hierarchische Startpartition. Diese wird in OQM-Stat optional 
durch ein partitionierendes k-Means-Verfahren verfeinert. Dabei werden:

• die Ward-Zentren als Startwerte verwendet
• iterative Reallokationen durchgeführt
• die Summe der quadratischen Abweichungen minimiert
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Eine stabile Clusterlösung zeigt dabei:

• nur wenige Reallokationen
• schnelle Konvergenz
• geringe Reduktion der SSE

Dies spricht für eine robuste natürliche Gruppenstruktur. Bei sehr kleinen Datensätzen (z. B. n < 20) 
ist die Aussagekraft multivariater Testverfahren eingeschränkt. Gründe hierfür sind:

• instabile Kovarianzschätzungen
• geringe Freiheitsgrade
• reduzierte Teststärke
• hohe Sensitivität gegenüber Ausreißern

Dennoch können selbst bei kleinen Datensätzen hochsignifikante Trennungen auftreten, sofern die 
Gruppen stark separiert sind. Ein signifikanter Hotelling-T²-Test bei kleinen Stichproben ist daher 
durchaus möglich, wenn:

• die Mittelwerte stark differieren
• die Streuungen klein sind
• die Gruppen geometrisch klar getrennt liegen

In solchen Fällen liefert der Test trotz kleiner Fallzahlen valide Evidenz für eine echte Gruppen-
struktur. Die statistische Validierung ist ein unverzichtbarer Bestandteil einer seriösen Clusterana-
lyse. Erst durch multivariate Tests lässt sich beurteilen, ob die gefundenen Cluster tatsächlich reale 
Objektklassen repräsentieren. OQM-Stat stellt hierzu ein vollständiges Validierungssystem bereit:

• Hotelling-T²-Test für Zweiklassenlösungen
• Wilks-Lambda-Test für Mehrklassenlösungen
• geometrische Clusteranalyse
• k-Means-Stabilitätsprüfung

Damit  wird  aus  einer  explorativen  Clusteranalyse  ein  statistisch  abgesichertes  Klassifikations-
modell.

 1.9  Industrielle Interpretation der Clusterlösung
Die Clusteranalyse ist ein exploratives, strukturbildendes Verfahren. Ihr primäres Ziel besteht darin,  
aus einer multivariaten Datenmatrix natürliche Gruppen zu identifizieren, ohne dass eine Klassen-
zugehörigkeit vorab bekannt ist. In industriellen Anwendungen stellt die Clusteranalyse damit häu-
fig den ersten Schritt einer systematischen Klassifikationskette dar.

Erst durch die anschließende Interpretation und Modellbildung wird aus einer Clusterlösung ein 
praxistaugliches Identifikationssystem. In technischen Anwendungen lautet die eigentliche Frage-
stellung nicht:

„Welche Gruppen existieren in den Daten?“

sondern:

„Zu welcher bekannten Klasse gehört ein neues Objekt?“
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Typische industrielle Klassifikationsprobleme sind:

• Gutteil / Schlechtteil
• Original / Fälschung
• Konform / Nicht-konform
• Freigabe / Sperrung
• Prozess stabil / Prozess instabil

Die Clusteranalyse liefert hierzu die notwendige Strukturinformation:

• Anzahl der Objektklassen
• geometrische Trennung
• relevante Merkmalskombinationen
• Streuungsstruktur
• Ausreißercharakteristik

Damit bildet sie die Grundlage für den Aufbau eines deterministischen Klassifikationsmodells. Die 
Clusteranalyse bildet den Einstieg in die multivariate Klassifikation. Erst durch die anschließende 
Modellbildung entsteht ein industriell nutzbares Identifikationssystem. Die Kombination aus:

• Ward-Clusteranalyse
• Calinski-Harabasz-Stopping-Rule
• Hotelling-T²-Validierung
• Wilks-Lambda-Test
• Mahalanobis-Distanzen

stellt ein leistungsfähiges, statistisch abgesichertes Klassifikationsframework dar. In den folgenden 
Kapiteln wird gezeigt, wie diese Methodik auf reale Produktionsprozesse übertragen werden kann 
— von der Datenerfassung über die Modellbildung bis zur Online-Entscheidung.

 1.10  Beispiel: Markenbewusstsein
Dies ist ein Lehrbeispiel; daher wurde der Datensatz bewusst klein gehalten. Dennoch lässt sich 
anschaulich demonstrieren, wie die Clusteranalyse in OQM-Stat arbeitet. Es werden zwei Cluster 
erwartet, die sich inhaltlich wie folgt charakterisieren lassen:

Ein Cluster ist durch hohes Einkommen und hohes Markenbewusstsein gekennzeichnet, während 
der andere Cluster niedriges Einkommen mit geringem Markenbewusstsein kombiniert. Aufgrund 
der kleinen Stichprobe sind keine stabilen und belastbaren Ergebnisse zu erwarten, was hier ausdrü-
cklich demonstriert werden soll. Gleichzeitig sollen alternative Lösungsansätze aufgezeigt werden, 
mit  denen  sich  trotz  dieser  Einschränkungen  einfachere  und  besser  interpretierbare  Ergebnisse 
erzielen lassen.

 1.10.1  Der Datensatz zum Markenbewusstsein

Der Datensatz stammt aus einem im Internet veröffentlichten Artikel:

Clusteranalyse – Methodenberatung UZH – Universität Zürich
(https://www.methodenberatung.uzh.ch › cluster).
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Über  die  Entstehung  der  Variablen  Einkommen und  Markenbewusstsein  werden keine  näheren 
Angaben gemacht. Es ist nicht bekannt, ob es sich um eine Zufallsstichprobe oder um einen kon-
struierten  Beispieldatensatz  handelt.  Ebenso  bleibt  unklar,  wie  das  Markenbewusstsein  konkret 
erhoben bzw. gemessen wurde.

Für die nachfolgende Analyse und Beurteilung wird daher angenommen, dass es sich um einen rea-
len Datensatz handelt.

 1.10.2  Eingabemenü von OQM-Stat
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Beruf Einkommen Markenbewusstsein
Arzt 6861 21765
Ingenieur 5150 28245
Chemiker 5474 25179
Manager 7389 19048
Professor 5152 24608
CEO 12810 27611
Anwalt 7203 21536
Koch 4162 24823
Architekt 6779 22499
Forstwart 3204 7465
Physiker ETH 5335 17471
Lehrer 4311 14735
Bauarbeiter 3949 17921
Fischer 2132 8822
Servicemitarbeiter 3018 12201
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Die Daten werden standardmäßig mit Kopfzeile (Namen der Variablen) und ID-Spalte (Bezeich-
nung der Objekte bzw. Beobachtungen) eingelesen. Dies ist sehr sinnvoll, da sowohl die Variablen-
namen als auch die Objektbezeichnungen in der Ergebnisausgabe weiterverwendet werden. Nach-
dem der Eingabebereich definiert wurde, werden zur Kontrolle

• n = Anzahl der Objekte und
• p = Anzahl der Variablen

ausgegeben.

Im nächsten Schritt erfolgt die Auswahl des Distanzmaßes. Wir wählen zunächst die euklidische 
Distanz,  werden jedoch später auch zeigen, welchen Einfluss die  Mahalanobis-Distanz auf die 
Ergebnisse hat.

Eine besonders wichtige Option ist die Suche nach der optimalen Clusterzahl 𝑘∗. Hierzu wird die 
Calinski-Harabasz-Stopping-Rule verwendet, die als eines der besten Kriterien zur Bestimmung 
der Clusterzahl gilt.

Für diesen Datensatz wird jedoch kein eindeutiges 𝑘∗ gefunden, da für keine Clusteranzahl ein 
Maximum des CH-Kriteriums auftritt. Dies zeigt deutlich, dass die geringe Größe des Datensatzes 
keine statistisch signifikante  Bestimmung der  optimalen Clusterzahl  erlaubt.  Aus diesem Grund 
muss der Suchbereich auf

min. Cluster = 2 und
max. Cluster = 2

eingeschränkt werden. Zusätzlich wird untersucht, was geschieht, wenn max. Cluster = 3 gesetzt wird. 
Da die automatische Bestimmung der Clusterzahl nicht erfolgreich ist, muss die „Stopping Rule“ 
deaktiviert werden, da andernfalls unsinnige oder instabile Ergebnisse entstehen können.

Der nächste Schritt betrifft die Definition eines Ausreißertests, mit dem mögliche Ausreißer identi-
fiziert werden. Es handelt sich hierbei um einen einfachen Test, dessen Sensitivität über die Wahr-
scheinlichkeit   eingestellt wird. Kleinere Werte von  erhöhen die Sensitivität, größere Werte ver𝛼 𝛼 -
ringern sie. Geeignete Werte für  sind beispielsweise: 0,9; 0,95; 0,975; 0,99; 0,995 und 0,999. Die𝛼  
voreingestellten Standardwerte können für eine erste Analyse problemlos übernommen werden.

Der letzte Schritt betrifft die Ausgabe der Ergebnisse sowie die Verbesserung der Zuordnung der 
Objekte mithilfe des  k-Means-Algorithmus. Alle entsprechenden Optionen sollten aktiviert wer-
den, da andernfalls das wichtige Scatterplot nur eingeschränkt dargestellt werden kann. Nach diesen 
Einstellungen wird die Clusteranalyse gestartet.
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 1.10.3  Das Dendrogramm und andere Analyseergebnisse

Die Analyse erzeugt ein Dendrogramm, das auf das Vorhandensein von zwei Clustern schließen lässt. 
Dabei ist jedoch zu berücksichtigen, dass dieses Ergebnis durch die Einstellung max. Cluster = 2 
erzwungen wurde. Die eingelesene Datenmatrix wird erneut ausgegeben und um mehrere Ergebnis-
spalten ergänzt:

• die Spalte Cluster, welche die ursprüngliche Zuordnung durch den Ward-Algorithmus enthält,
• die Spalte Ausreißer, in der erkannte Ausreißer dokumentiert werden,
• die Spalte NeuCluster, welche die veränderte Zuordnung der Objekte nach der Partitionierung mit 

dem k-Means-Algorithmus anzeigt,
• sowie die Spalte Distanzmaße, in der für jedes Objekt die euklidische Distanz gemäß der gewähl-

ten Definition ausgegeben wird.

Wir sehen Cluster 1 mit den Berufen Forstwart,  Lehrer,  Fischer und Servicemitarbeiter  und im 
Cluster 2 befinden sich alle elf anderen Berufe. Auch der CEO mit seinem sehr hohen Gehalt gehört  
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Objekt Einkommen Markenbewusstsein Cluster Ausreißer NeuCluster Distanzmaße
Arzt 6861 21765 2 0 2 1130.345994
Ingenieur 5150 28245 2 0 2 5592.217967
Chemiker 5474 25179 2 0 2 2556.385085
Manager 7389 19048 2 0 2 3875.07175
Professor 5152 24608 2 0 2 2196.960312
CEO 12810 27611 2 0 2 8029.618488
Anwalt 7203 21536 2 0 2 1496.991642
Koch 4162 24823 2 0 2 3013.409059
Architekt 6779 22499 2 0 2 488.5643837
Forstwart 3204 7465 1 0 1 3340.963278
Physiker ETH 5335 17471 2 0 2 5423.585519
Lehrer 4311 14735 1 0 1 4092.610185
Bauarbeiter 3949 17921 2 0 2 5446.859168
Fischer 2132 8822 1 0 1 2237.17168
Servicemitarbeiter 3018 12201 1 0 1 1403.103925

Urdaten Zuordnung
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zu dieser Gruppe. Keines der 15 Objekte wurde als Ausreißer erkannt. Die Partitionierung ergab 
keine Veränderung.

Rechts neben der Matrix werden weitere Ergebnisse ausgegeben: Im oberen Block der Ausgabe 
befinden sich die Bedingungen und Ergebnisse des Ward-Algorithmus, im zweiten Block die Bedin-
gungen und Ergebnisse der k-Means-Partitionierung. Die  SSE-Werte (Sum of Squared Errors) 
stellen dabei das zentrale Ergebnis der Clusteranalyse dar, da sie den zu minimierenden Zielwert 
sowohl für das Ward-Verfahren als auch für den k-Means-Algorithmus repräsentieren.

Im unteren Block werden – bei Verwendung der Mahalanobis-Distanzen – zusätzlich die Ergebnisse 
statistischer Tests ausgegeben:

• der Hotelling-T²-Test für zwei Cluster (vergleichbar mit dem univariaten t-Test),
• bzw. der  Wilks-Λ-Test für mehr als zwei Cluster (vergleichbar mit der Streuungszerlegung im 

univariaten Fall).

Ein signifikantes Testergebnis bedeutet hierbei nicht, dass die Cluster „richtig“ sind, sondern ledig-
lich, dass sich die Mittelwertvektoren der Cluster statistisch signifikant voneinander unterscheiden. 
Die anschließende Ausgabe betrifft im ersten Block die  Mittelwertvektoren der Cluster, die im 
Scatterplot als Zentren dargestellt werden. Gleichzeitig dienen diese Zentren als Startpunkte für den 
partitionierenden k-Means-Algorithmus.  Dadurch wird die  Anzahl  der  erforderlichen Iterationen 
deutlich reduziert, da die vom Ward-Algorithmus gelieferten Startwerte bereits nahezu optimal sind.

In  den folgenden Blöcken werden die  Kovarianzmatrizen der einzelnen Cluster ausgegeben. 
Diese werden benötigt, um in Scatterplots mit zwei Variablen Konfidenz-Ellipsen (Ellipsoide) dar-
stellen zu können.

Bei  Verwendung  der  Mahalanobis-Distanzen verdoppelt  sich  die  Ausgabe,  da  die  Ergebnisse 
sowohl im Whitening-Raum als auch – nach Rücktransformation – im Originalraum dargestellt 
werden.
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Distanzmaß: Euklidisch
Ausreißertest: MD²/Chi²

alpha: 0.99
Cluster-Suche (CH): 2 .. 2

k*(optimal): 2
Anzahl Variabler p: 2

n (original): 15
n (ohne Outlier): 15
Rechenzeit (s): 0.016

max. Iterationen: 100
Toleranz: 0.0000001

Iterationen: 1
Umklassifikationen: 0

SSE (Start): 228932276.8
SSE (Ende): 228932276.8

Clustering mittels Ward- (und k-Mean-Algorithmus)

Bedingungen für Ward-Algorithmus

Partitionierung mit k-Means nach Ward-Resultaten
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 1.10.4  Das 2D-Scatterplot

Um das Scatterplot darzustellen, muss zunächst ein separates Menü geöffnet und einige Eingaben 
vorgenommen werden. Zuerst wird die  Datenmatrix definiert. Diese wird von der ersten Spalte 
(Objektname) bis zur vorletzten Spalte (NeuCluster) eingelesen, einschließlich der Kopfzeile mit 
den Variablennamen und bis zur letzten Datenzeile. 

Alle anderen Eingaben führen entweder zu einer Fehlermeldung, zum Abbruch des Programms oder 
zu einer fehlerhaften grafischen Darstellung. Im nächsten Schritt werden die Startwerte im Original-
raum erneut eingelesen, ebenfalls mit Kopfzeile und Clusterspalte. Diese entsprechen den Zentren 
der Cluster.
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Anschließend kann ausgewählt werden, welche Variablen dargestellt werden sollen. Bei nur zwei 
Variablen – wie in diesem Beispiel – ist die mögliche Auswahl bereits vorgegeben. Zum Schluss 
werden  alle  Kontrollkästchen  aktiviert,  um sämtliche  verfügbaren  Informationen  in  der  Grafik 
darzustellen. Danach wird die Grafikerzeugung gestartet. Das Ergebnis ist in der folgenden Abbil-
dung dargestellt.In der Grafik fallen mehrere Punkte unmittelbar auf:

• Die Streuung von Cluster 2 ist deutlich größer als die von Cluster 1.
• Die Cluster 1 und 2 besitzen eine ausgeprägte Schnittmenge; die Trennung der Cluster ist somit 

nicht perfekt.
• Der CEO liegt außerhalb der 95%-Ellipse, jedoch noch innerhalb der 99%-Ellipse und ist damit 

kein Ausreißer.
• Der CEO trägt in besonderem Maße zur Streuung von Cluster 2 bei.
• Zwei Objekte aus Cluster 2 liegen im Bereich von Cluster 1.
• Ein Objekt aus Cluster 1 liegt im Bereich von Cluster 2.

Um eine Verbesserung zu erreichen, wird eine 3-Cluster-Lösung untersucht. Dazu wurde lediglich 
die maximale Clusterzahl auf 3 gesetzt; alle übrigen Einstellungen blieben unverändert. Auch hier 
treten Auffälligkeiten auf, die eine sinnvolle Interpretation erschweren:

• In Cluster 3 wird ein negatives Einkommen mit  hohem Markenbewusstsein kombiniert,  was 
inhaltlich keinen Sinn ergibt.

• Bei Cluster 1 und 2 zeigt sich eine nahezu lineare Aneinanderreihung der Objekte.
• Die Streuungen von Cluster 1 und 2 sind wieder ähnlich, während Cluster 3 eine deutlich grö-

ßere Streuung aufweist, erneut maßgeblich verursacht durch den CEO.
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Wir gehen zurück zu den ursprünglichen Definitionen und nutzen die Malahanonis-Distanz.

Auch diese Grafik liefert keine sinnvolle Interpretation:

• So ist der CEO mit hohem Markenbewusstsein in der gleichen Gruppe (Cluster 2) wie Berufe 
mit niedrigem Markenbewusstsein.

• Auch hier reicht die 95% Ellipse von Cluster 2 bis in den negativen Einkommensbereich.
• Die Streuungen der Cluster 1 und 2 sind sehr unterschiedlich. 

Der  Datensatz  ist  aus  mehreren  Gründen  für  eine  Clusteranalyse  ungeeignet.  Beide  Variablen 
decken einen sehr großen Wertebereich ab und sind zudem stark korreliert.  Hinzu kommt, dass 
lediglich zwei Klassifikationsmerkmale (Variablen) zur Verfügung stehen und insgesamt viel zu 
wenige Objekte vorliegen. Dadurch kann der CEO weder als Ausreißer eindeutig erkannt noch als 
eigene Klasse sinnvoll abgegrenzt werden.

Die resultierende Lösung ist daher trivial, wie die nachfolgende Grafik einer nichtlinearen Regres-
sion zeigt.
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In Abhängigkeit von der Höhe des Einkommens kann nun das Markenbewusstsein geschätzt wer-
den; es gilt demnach:

Je höher das Einkommen, desto höher ist in der Tendenz das Markenbewusstsein.

 1.11  Beispiel: Banknoten
Wir wenden uns nun einen Datensatz von echten und gefälschten Banknoten zu, welcher in Kapitel 1 
ausführlich beschrieben wurde. Eine Besonderheit ist, dass die zwei Gruppen (echte und gefälschte 
Banknoten)  bekannt  sind  und deshalb  ist  dieser  Datensatz  geeignet,  die  Wirkungsweise  und die 
Ergebnisse einer Clusteranalyse, wie in OQM-Stat etabliert ist, zu verifizieren.

Die Eingabemenüs sind im vorherigen Beispiel erklärt, so dass nur noch eine mögliche, zusätzliche 
Ausgabe der Analyse erklärt werden muss. Für das 2D-Scatterplot gilt das insgesamt 15 Grafiken 
erstellt werden müssen um alle Abhängigkeiten der Variablen beurteilen zu können. Dies ist ein 
durchaus lohnender Aufwand. Doch zuerst gilt es die Analyseergebnisse zu bewerten. Zur Analyse 
verwenden wir die robuste Mahalanobis-Distanz.

 1.11.1  Datensatz: Echte und gefälschte Banknoten

Vermessen wurden 100 echte Schweizer Banknoten mit dem Nennwert von 1000 Franken, welche 
wegen  Gebrauchsspuren  aus  dem  Verkehr  gezogen  wurden.  Zusätzlich  wurden  100  gefälschte 
1000-Franken-Banknoten vermessen.

Die Zielsetzung besteht darin, die Frage zu beantworten, ob es möglich ist, die Banknoten anhand 
einiger geometrischer Abmessungen automatisch in zwei Gruppen (echt und gefälscht) aufzuteilen, 
ohne dass diese Klassenzugehörigkeit im Vorfeld bekannt ist.
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Der Datensatz besteht aus geometrischen Merkmalen von Banknoten. Für jede Banknote wurden 
mehrere kontinuierliche Merkmale gemessen, beispielsweise:

• Länge der Banknote; x1
• Breite der Banknote, links gemessen; x2
• Breite der Banknote, rechts gemessen; x3
• unterer Randabstand; x4
• oberer Randabstand; x5
• Länge der Bilddiagonalen; x6

Jede Banknote ist durch einen Merkmalsvektor beschrieben:

mit p = Anzahl der Variablen
i = Index der Banknoten.

Die Messung gestaltete sich aufwendig. Um die erforderliche Messgenauigkeit zu erzielen, wurde 
ein Episkop mit 10-facher Vergrößerung auf einer Projektionsfläche verwendet. Die Rohdaten wur-
den aus dem Internet entnommen, stammen jedoch ursprünglich aus dem Buch

Bernhard Flury, Hans Riedwyl: 
Angewandte multivariate Statistik, Gustav Fischer Verlag 1983

und liegen in tabellarischer Form vor:
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id x1 x2 x3 x4 x5 x6 id x1 x2 x3 x4 x5 x6
1 214.8 131.0 131.1 9.0 9.7 141.0 51 214.6 129.8 129.4 7.2 10.0 141.3
2 214.6 129.7 129.7 8.1 9.5 141.7 52 215.3 130.6 130.0 9.5 9.7 141.1
3 214.8 129.7 129.7 8.7 9.6 142.2 53 214.5 130.1 130.0 7.8 10.9 140.9
4 214.8 129.7 129.6 7.5 10.4 142.0 54 215.4 130.2 130.2 7.6 10.9 141.6
5 215.0 129.6 129.7 10.4 7.7 141.8 55 214.5 129.4 129.5 7.9 10.0 141.4
6 215.7 130.8 130.5 9.0 10.1 141.4 56 215.2 129.7 129.4 9.2 9.4 142.0
7 215.5 129.5 129.7 7.9 9.6 141.6 57 215.7 130.0 129.4 9.2 10.4 141.2
8 214.5 129.6 129.2 7.2 10.7 141.7 58 215.0 129.6 129.4 8.8 9.0 141.1
9 214.9 129.4 129.7 8.2 11.0 141.9 59 215.1 130.1 129.9 7.9 11.0 141.3

10 215.2 130.4 130.3 9.2 10.0 140.7 60 215.1 130.0 129.8 8.2 10.3 141.4
11 215.3 130.4 130.3 7.9 11.7 141.8 61 215.1 129.6 129.3 8.3 9.9 141.6
12 215.1 129.5 129.6 7.7 10.5 142.2 62 215.3 129.7 129.4 7.5 10.5 141.5
13 215.2 130.8 129.6 7.9 10.6 141.4 63 215.4 129.8 129.4 8.0 10.6 141.5
14 214.7 129.7 129.7 7.7 10.9 141.7 64 214.5 130.0 129.5 8.0 10.8 141.4
15 215.1 129.9 129.7 7.7 10.8 141.8 65 215.0 130.0 129.8 8.6 10.6 141.5
16 214.5 129.8 129.8 9.3 8.5 141.6 66 215.2 130.6 130.0 8.8 10.6 140.8
17 214.6 129.9 130.1 8.2 9.8 141.7 67 214.6 129.5 129.2 7.7 10.3 141.3
18 215.0 129.9 129.7 9.0 9.0 141.9 68 214.8 129.7 129.3 9.1 9.5 141.5
19 215.2 129.6 129.6 7.4 11.5 141.5 69 215.1 129.6 129.8 8.6 9.8 141.8
20 214.7 130.2 129.9 8.6 10.0 141.9 70 214.9 130.2 130.2 8.0 11.2 139.6
21 215.0 129.9 129.3 8.4 10.0 141.4 71 213.8 129.8 129.5 8.4 11.1 140.9
22 215.6 130.5 130.0 8.1 10.3 141.6 72 215.2 129.9 129.5 8.2 10.3 141.4
23 215.3 130.6 130.0 8.4 10.8 141.5 73 215.0 129.6 130.2 8.7 10.0 141.2
24 215.7 130.2 130.0 8.7 10.0 141.6 74 214.4 129.9 129.6 7.5 10.5 141.8
25 215.1 129.7 129.9 7.4 10.8 141.1 75 215.2 129.9 129.7 7.2 10.6 142.1
26 215.3 130.4 130.4 8.0 11.0 142.3 76 214.1 129.6 129.3 7.6 10.7 141.7
27 215.5 130.2 130.1 8.9 9.8 142.4 77 214.9 129.9 130.1 8.8 10.0 141.2
28 215.1 130.3 130.3 9.8 9.5 141.9 78 214.6 129.8 129.4 7.4 10.6 141.0
29 215.1 130.0 130.0 7.4 10.5 141.8 79 215.2 130.5 129.8 7.9 10.9 140.9
30 214.8 129.7 129.3 8.3 9.0 142.0 80 214.6 129.9 129.4 7.9 10.0 141.8
31 215.2 130.1 129.8 7.9 10.7 141.8 81 215.1 129.7 129.7 8.6 10.3 140.6
32 214.8 129.7 129.7 8.6 9.1 142.3 82 214.9 129.8 129.6 7.5 10.3 141.0
33 215.0 130.0 129.6 7.7 10.5 140.7 83 215.2 129.7 129.1 9.0 9.7 141.9
34 215.6 130.4 130.1 8.4 10.3 141.0 84 215.2 130.1 129.9 7.9 10.8 141.3
35 215.9 130.4 130.0 8.9 10.6 141.4 85 215.4 130.7 130.2 9.0 11.1 141.2
36 214.6 130.2 130.2 9.4 9.7 141.8 86 215.1 129.9 129.6 8.9 10.2 141.5
37 215.5 130.3 130.0 8.4 9.7 141.8 87 215.2 129.9 129.7 8.7 9.5 141.6
38 215.3 129.9 129.4 7.9 10.0 142.0 88 215.0 129.6 129.2 8.4 10.2 142.1
39 215.3 130.3 130.1 8.5 9.3 142.1 89 214.9 130.3 129.9 7.4 11.2 141.5
40 213.9 130.3 129.0 8.1 9.7 141.3 90 215.0 129.9 129.7 8.0 10.5 142.0
41 214.4 129.8 129.2 8.9 9.4 142.3 91 214.7 129.7 129.3 8.6 9.6 141.6
42 214.8 130.1 129.6 8.8 9.9 140.9 92 215.4 130.0 129.9 8.5 9.7 141.4
43 214.9 129.6 129.4 9.3 9.0 141.7 93 214.9 129.4 129.5 8.2 9.9 141.5
44 214.9 130.4 129.7 9.0 9.8 140.9 94 214.5 129.5 129.3 7.4 10.7 141.5
45 214.8 129.4 129.1 8.2 10.2 141.0 95 214.7 129.6 129.5 8.3 10.0 142.0
46 214.3 129.5 129.4 8.3 10.2 141.8 96 215.6 129.9 129.9 9.0 9.5 141.7
47 214.8 129.9 129.7 8.3 10.2 141.5 97 215.0 130.4 130.3 9.1 10.2 141.1
48 214.8 129.9 129.7 7.3 10.9 142.0 98 214.4 129.7 129.5 8.0 10.3 141.2
49 214.6 129.7 129.8 7.9 10.3 141.1 99 215.1 130.0 129.8 9.1 10.2 141.5
50 214.5 129.0 129.6 7.8 9.8 142.0 100 214.7 130.0 129.4 7.8 10.0 141.2

Echte Banknoten
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id x1 x2 x3 x4 x5 x6 id x1 x2 x3 x4 x5 x6
101 214.4 130.1 130.3 9.7 11.7 139.8 151 214.9 130.3 129.9 11.9 10.6 139.8
102 214.9 130.5 130.2 11.0 11.5 139.5 152 214.6 129.9 129.7 11.9 10.1 139.0
103 214.9 130.3 130.1 8.7 11.7 140.2 153 214.6 129.7 129.3 10.4 11.0 139.3
104 215.0 130.4 130.6 9.9 10.9 140.3 154 214.5 130.1 130.1 12.1 10.3 139.4
105 214.7 130.2 130.3 11.8 10.9 139.7 155 214.5 130.3 130.0 11.0 11.5 139.5
106 215.0 130.2 130.2 10.6 10.7 139.9 156 215.1 130.0 130.3 11.6 10.5 139.7
107 215.3 130.3 130.1 9.3 12.1 140.2 157 214.2 129.7 129.6 10.3 11.4 139.5
108 214.8 130.1 130.4 9.8 11.5 139.9 158 214.4 130.1 130.0 11.3 10.7 139.2
109 215.0 130.2 129.9 10.0 11.9 139.4 159 214.8 130.4 130.6 12.5 10.0 139.3
110 215.2 130.6 130.8 10.4 11.2 140.3 160 214.6 130.6 130.1 8.1 12.1 137.9
111 215.2 130.4 130.3 8.0 11.5 139.2 161 215.6 130.1 129.7 7.4 12.2 138.4
112 215.1 130.5 130.3 10.6 11.5 140.1 162 214.9 130.5 130.1 9.9 10.2 138.1
113 215.4 130.7 131.1 9.7 11.8 140.6 163 214.6 130.1 130.0 11.5 10.6 139.5
114 214.9 130.4 129.9 11.4 11.0 139.9 164 214.7 130.1 130.2 11.6 10.9 139.1
115 215.1 130.3 130.0 10.6 10.8 139.7 165 214.3 130.3 130.0 11.4 10.5 139.8
116 215.5 130.4 130.0 8.2 11.2 139.2 166 215.1 130.3 130.6 10.3 12.0 139.7
117 214.7 130.6 130.1 11.8 10.5 139.8 167 216.3 130.7 130.4 10.0 10.1 138.8
118 214.7 130.4 130.1 12.1 10.4 139.9 168 215.6 130.4 130.1 9.6 11.2 138.6
119 214.8 130.5 130.2 11.0 11.0 140.0 169 214.8 129.9 129.8 9.6 12.0 139.6
120 214.4 130.2 129.9 10.1 12.0 139.2 170 214.9 130.0 129.9 11.4 10.9 139.7
121 214.8 130.3 130.4 10.1 12.1 139.6 171 213.9 130.7 130.5 8.7 11.5 137.8
122 215.1 130.6 130.3 12.3 10.2 139.6 172 214.2 130.6 130.4 12.0 10.2 139.6
123 215.3 130.8 131.1 11.6 10.6 140.2 173 214.8 130.5 130.3 11.8 10.5 139.4
124 215.1 130.7 130.4 10.5 11.2 139.7 174 214.8 129.6 130.0 10.4 11.6 139.2
125 214.7 130.5 130.5 9.9 10.3 140.1 175 214.8 130.1 130.0 11.4 10.5 139.6
126 214.9 130.0 130.3 10.2 11.4 139.6 176 214.9 130.4 130.2 11.9 10.7 139.0
127 215.0 130.4 130.4 9.4 11.6 140.2 177 214.3 130.1 130.1 11.6 10.5 139.7
128 215.5 130.7 130.3 10.2 11.8 140.0 178 214.5 130.4 130.0 9.9 12.0 139.6
129 215.1 130.2 130.2 10.1 11.3 140.3 179 214.8 130.5 130.3 10.2 12.1 139.1
130 214.5 130.2 130.6 9.8 12.1 139.9 180 214.5 130.2 130.4 8.2 11.8 137.8
131 214.3 130.2 130.0 10.7 10.5 139.8 181 215.0 130.4 130.1 11.4 10.7 139.1
132 214.5 130.2 129.8 12.3 11.2 139.2 182 214.8 130.6 130.6 8.0 11.4 138.7
133 214.9 130.5 130.2 10.6 11.5 139.9 183 215.0 130.5 130.1 11.0 11.4 139.3
134 214.6 130.2 130.4 10.5 11.8 139.7 184 214.6 130.5 130.4 10.1 11.4 139.3
135 214.2 130.0 130.2 11.0 11.2 139.5 185 214.7 130.2 130.1 10.7 11.1 139.5
136 214.8 130.1 130.1 11.9 11.1 139.5 186 214.7 130.4 130.0 11.5 10.7 139.4
137 214.6 129.8 130.2 10.7 11.1 139.4 187 214.5 130.4 130.0 8.0 12.2 138.5
138 214.9 130.7 130.3 9.3 11.2 138.3 188 214.8 130.0 129.7 11.4 10.6 139.2
139 214.6 130.4 130.4 11.3 10.8 139.8 189 214.8 129.9 130.2 9.6 11.9 139.4
140 214.5 130.5 130.2 11.8 10.2 139.9 190 214.6 130.3 130.2 12.7 9.1 139.2
141 214.8 130.2 130.3 10.0 11.9 139.3 191 215.1 130.2 129.8 10.2 12.0 139.4
142 214.7 130.0 129.4 10.2 11.0 139.2 192 215.4 130.5 130.6 8.8 11.0 138.6
143 214.6 130.2 130.4 11.2 10.7 139.9 193 214.7 130.3 130.2 10.8 11.1 139.2
144 215.0 130.5 130.4 10.6 11.1 139.9 194 215.0 130.5 130.3 9.6 11.0 138.5
145 214.5 129.8 129.8 11.4 10.0 139.3 195 214.9 130.3 130.5 11.6 10.6 139.8
146 214.9 130.6 130.4 11.9 10.5 139.8 196 215.0 130.4 130.3 9.9 12.1 139.6
147 215.0 130.5 130.4 11.4 10.7 139.9 197 215.1 130.3 129.9 10.3 11.5 139.7
148 215.3 130.6 130.3 9.3 11.3 138.1 198 214.8 130.3 130.4 10.6 11.1 140.0
149 214.7 130.2 130.1 10.7 11.0 139.4 199 214.7 130.7 130.8 11.2 11.2 139.4
150 214.9 129.9 130.0 9.9 12.3 139.4 200 214.3 129.9 129.9 10.2 11.5 139.6

Gefälschte Banknoten
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Die Klassenzugehörigkeit (echt / gefälscht) ist in der Analyse nicht bekannt und dient später aus-
schließlich zur Validierung der Clusterstruktur.

 1.11.2  Die Analyseergebnisse

Da wir wissen, dass die ersten 100 Banknoten echt sind und die zweiten 100 Banknoten gefälscht 
sind, können wir die Ergebnisse der vorangestellten Tabelle verifizieren. Diese fünf Banknoten wur-
den vom Ward-Algorithmus falsch klassifiziert, weil Objekte mit den Nummern 1-100 echte Bankno-
ten sind und in Cluster 2 der echten Banknoten gehören, Objekte mit den Nummern 101-200 sind 
gefälschte Banknoten und gehören in Cluster 1. Hier zeigt sich wie wichtig die Verbesserung durch 
das partitionierende Verfahren k-Means ist. Die Spalte NeuCluster zeigt richtige Zuordnungen nach 
Partitionierung. In der Spalte NeuCluster sind alle Zuordnungen der gesamten Tabelle richtig.

Der erste Auswertungsblock zeigt 9 Ausreißer = n(Original) – n(ohne Outlier), dies ist nicht ver-
wunderlich. So haben die echten Noten einige Gebrauchsspuren (Knitterfalten), welche zu Messfeh-
lern geführt haben können. Bei den gefälschten Banknoten ist keines Wegs sicher, dass alle von 
dem gleichen Fälscher stammen. Auch könnte es sich um Produktionsfehler handeln.

Im zweiten Auswertungsblock können wir  die  erreichte  Verbesserung durch die  Partitionierung 
anhand der SSE beurteilen.  Nach der Partitionierung ist  die  Quadratsumme SSE niedriger.  Der 
Hotellings T2-Test ist hoch signifikant, eine Vorsetzung für eine gute Trennung der Cluster. Sollte 
das Ergebnis die Nullhypothese bestätigen ist eine Trennung der Cluster nicht mehr möglich. Der 
Test bezieht sich nicht auf die Cluster, sondern deren Mittelwerte.
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Objekt Länge Links Rechts Unten Oben Diagonal Cluster Ausreißer NeuCluster Distanzmaße
70 214.9 130.2 130.2 8 11.2 139.6 1 0 2 2.60181496

104 215 130.4 130.6 9.9 10.9 140.3 2 0 1 1.90266932
110 215.2 130.6 130.8 10.4 11.2 140.3 2 0 1 2.34632774
123 215.3 130.8 131.1 11.6 10.6 140.2 2 0 1 3.23190137
125 214.7 130.5 130.5 9.9 10.3 140.1 2 0 1 2.35299985

Distanzmaß: Mahalanobis
Ausreißertest: MD²/Chi²

alpha: 0.99
Cluster-Suche (CH): 2 .. 10

k*(optimal): 2
Anzahl Variabler p: 6

n (original): 200
n (ohne Outlier): 191
Rechenzeit (s): 0.051

max. Iterationen: 100
Toleranz: 0.0000001 T^2: 2290.9896

Iterationen: 2 p-Wert: 0
Umklassifikationen: 6 H0: verwerfen

SSE (Start): 860.395914
SSE (Ende): 852.223332

Clustering mittels Ward- (und k-Mean-Algorithmus)

Bedingungen für Ward-Algorithmus

Partitionierung mit k-Means nach Ward-Resultaten
Hotellings T^2 -Test
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Die CH-Tabelle zeigt den größten Wert für zwei Cluster an, deswegen macht es keinen Sinn die 
Anzahl der Cluster zu erhöhen, weil der CH-Test objektiv und sehr gut ist. Die nächsten Ausgabe-
blöcke Zentren und Kovarianzen sind wichtig, aber auch abstrakt. Ihre Resultate können besser 
anhand der Grafiken interpretiert werden.

Die letzte Ausgabe ist die Ausreißeranalyse. In der zweiten Zeile sind die verschiedenen Zentren 
benannt. Die dritte Zeile definiert den Grenzwert für einen Ausreißer von den jeweiligen Zentren. 
Ab der dritten Zeile werden für jeden Ausreißer die Abweichungen zum jeweiligen Zentrum ausge-
geben. Für die Variablen werden signifikante Abweichungen im Fettdruck ausgegeben, dies gibt uns 
einen Hinweis, welche Variable voraussichtlich für den Ausreißer verantwortlich ist. Auffällig ist, 
dass alle Ausreißer des Cluster 1 signifikante Abweichungen für die Diagonale produzieren.

Letztendlich kann nur eine Identifikationsanalyse eine besondere Art der Diskriminanzanalyse die 
Frage, welche Variable für die Abweichungen verantwortlich ist, beantworten. Die Analyse wird in 
einem folgenden Kapitel zur Diskriminanz- und Identifikationsanalyse fortgesetzt.

Im nächsten Schritt werden wir alle 15 möglichen 2D-Scatterplots darstellen.
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k Wk (Within) Bk (Between) CH(k)
2 860.395914 168.630496 37.0424396
3 759.184548 269.841862 33.4110264
4 675.515135 353.511275 32.6203441
5 616.059966 412.966444 31.1705689
6 569.168697 459.857713 29.8940112
7 527.001905 502.024505 29.2132116
8 497.920447 531.105962 27.8852322
9 471.160544 557.865866 26.9365689

10 447.662791 581.363619 26.117579

Detaillierte CH-Tabelle

Zentren: Global Cluster 1 Cluster 2 Länge Links Rechts Unten Oben Diagonal
Ausreißer

1 5.09817595 5.2794076 5.09626739 -0.2643259 2.60331779 1.509581 -2.44844415 -3.22609479 0.30315069
5 4.20944597 4.55276557 4.07237412 0.28075088 -1.55943565 0.6941943 1.6189848 -3.36629693 -0.89600602

13 4.24414475 4.58085724 4.11265461 0.82582766 1.75678494 -3.46178145 -1.07145657 -0.20616753 0.89502598
40 5.58409364 5.86958555 5.45783195 -2.71717143 1.20000895 -4.32579614 -1.18832187 -1.32107671 0.29387503
160 4.20007962 4.1100651 4.49695555 -0.80940269 1.58831998 -1.02512626 -1.96275037 1.20986027 -2.73535776
161 4.78604835 4.81133839 4.95053205 1.91598123 -0.52801214 -0.80659127 -0.68127851 2.64543271 -3.23633721
167 5.20433227 5.19942201 5.38305918 3.82374998 0.72325742 0.03226256 1.00646277 -0.67952039 -3.17481837
171 5.34099824 5.23588497 5.609648 -2.71717143 2.35062034 0.06803528 -2.72176281 -0.4728666 -2.69344738
180 4.50732843 4.40594949 4.80124092 -1.08194108 0.50551538 1.36217418 -2.03702742 0.72108263 -3.43930857

4.100230948 2.326347874

Ausreißeranalyse
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Bild: Länge vs. Links

Bild: Länge vs. Rechts
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Bild: Länge vs. Unten

Bild: Länge vs. Oben
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Bild: Länge vs. Diagonale

Bild: Links vs. Rechts
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Bild: Links vs. Unten

Bild: Links vs. Oben
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Bild: Links vs. Diagonal

Bild: Rechts vs. Unten
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Bild: Rechts vs. Oben

Bild: Rechts vs. Diagonal
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Bild: Unten vs. Oben

Bild: Unten vs. Diagonale
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Bild: Oben vs. Diagonale

Die Interpretation 2D-Scatterplots ist  nicht  einfach,  versucht man doch einen mehrdimensionalen 
Raum anhand verschiedener zweidimensionaler Räume darzustellen. Doch deuten große Abweichun-
gen von Ausreißern zu den Ellipsen auf die verantwortlichen Variablen hin. Auffällig ist auch, das die 
Größen der Ellipsen (ein Maß für die Streuung) für den Cluster 2 (echte Banknoten) meist größer ist 
als die von Cluster 1 (gefälschte Banknoten). Dies ist wohl die Gebrauchsspuren der echten Bankno-
ten und der damit einhergehenden Messunsicherheit zurückzuführen. Außerdem ist erkennbar, welche 
Variablen einen großen Einfluss auf die Trennfunktion der Cluster haben. Wenn die Ellipsen nur eine 
kleine oder  gar  keine Schnittmenge ergeben ist  der  Varableneinfluss  für  die  Trennfunktion groß, 
umgekehrt gilt, dass bei großen Schnittmengen kein oder nur ein geringer Einfluss festgestellt werden 
kann. Demnach ist der Einfluss der Länge gering, Links und Rechts haben einen Einfluss, den größten 
Einfluss kann man für die Variablen Unten, Oben und Diagonale erwarten.

Da die Clusteranalyse ein strukturbildendes Verfahren ist, sind fast alle Aussagen nur Vermutungen 
und Hypothesen. Damit die Hypothesen geprüft werden können bedarf es strukturprüfender Verfah-
ren.  Für die  Clusterprüfung und Trennfunktion ist  dies  die  Diskriminanzanalyse,  welche wir  in 
OQM-Stat im wichtigen Zweigruppenfall mittels multipler Regressionsanalyse durchführen kön-
nen. Dazu sind die Daten entsprechend aufzubereiten. Für Prüfung neuer Objekte oder Ausreißer 
liefert die Identifikationsprüfung entsprechende Ergebnisse.

Deshalb ist der nächste Schritt, die Diskriminanzanalyse und Identifikationsanalyse im Zweigrup-
penfall darzulegen und ihre Anwendung am Beispiel der Banknoten zu demonstrieren. 
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 2  Diskriminanz- und Identifikationsanalyse im Zweigruppenfall
Die Diskriminanzanalyse dient der strukturprüfenden Auswertung bereits gebildeter Gruppen (Clus-
ter) oder bestehender Gruppen. Im Zweigruppenfall wird untersucht, ob sich zwei Gruppen statis-
tisch trennen lassen und wie gut diese Trennung ist. Außerdem wird die Frage beantwortet, wie gut 
neue Beobachtungen einer Gruppe zugeordnet werden können, und mit welcher Wahrscheinlichkeit 
eine Beobachtung zu Gruppe 1 oder Gruppe 2 gehört.

Die  Identifikationsanalyse  bei  der  ein  Referenzcluster  gegen  eine  neue  Beobachtung  (Objekt) 
geprüft wird. Auch können Ausreißer verifiziert werden. Die Identifikationsanalyse ist eine spezi-
elle Diskrimianzanlyse im Zweigruppenfall, wobei der Referenzcluster unter beliebigen Clustern 
ausgewählt werden.

In OQM-Stat wird die Diskriminanzanalyse im Zweigruppenfall nicht über klassische Fisher-Dis-
kriminanzfunktionen, sondern über eine äquivalente Formulierung mittels multipler Regression rea-
lisiert. Dies erlaubt eine einheitliche mathematische Behandlung und einen klaren probabilistischen 
Zugang.

 2.1  Datenaufbereitung
Aus der Clusteranalyse werden folgende Spalten verwendet:

• Objekt (ID)
• Variablen: 𝑥1, 𝑥2, …, 𝑥𝑝
• Clusterzuordnung (Cluster oder NeuCluster)
• Ausreißerkennzeichnung

Die Objekt (ID) ist notwendig um die Objekte nach der Diskiminanzanalyse bzgl. Ausreißern und 
großen Residuen, sowie großen Einflüssen auf die Diskriminanzfunktion zu bewerten. Da die multi-
ple Regression eine eigene ID erzeugt,  muss die Objekt-Spalte kopiert  und in die Ausgabe der 
multiplen Regression manuell eingefügt werden. Dies ist nicht zwingend erforderlich, macht aber 
einfacher die Objekte zu identifizieren. Die Variablen werden zur Berechnung der Diskriminanz-
funktion benötigt. Dies gilt auch für die Clusterzuordnung die verwendet wird um die Anzahl von 
Objekten jeden Clusters zu ermitteln und aus diesen die Diskriminanzwerte der Gruppen nach der 
Fisher-Codierung  festzulegen.  Die  Spalte  der  Ausreißer  wird  zur  Bereinigung  des  Datensatzes 
benötigt. Vor der Diskriminanzanalyse erfolgt automatisch:

• Entfernung aller Ausreißer
• Reduktion auf genau zwei Cluster

Erzeugung einer neuen Datenmatrix mit:

• der Objekt (ID)
• den Variablen 𝑥1, …, 𝑥𝑝
• einer zusätzlichen Diskriminanzvariable 𝐷

Die  Datenmatrix  aus  Variablen  plus  Diskriminanzvariable  kann  natürlich  auch  direkt  in  Excel 
erstellt  werden,  eine  zuvor  durchgeführte  Clusteranalyse  ist  nur  erforderlich,  wenn  keine  zwei 

50



Clusteranalyse mit OQM-Stat 

Gruppen existieren. Zur Regression wird eine künstliche Zielvariable  definiert. Standardmäßig𝐷  
wird die Fisher-Codierung verwendet: Für zwei Gruppen mit Umfängen 𝑛1 und 𝑛2:

Eigenschaften dieser Codierung:

• gewichtete Zentrierung bei ungleichen Gruppengrößen
• bei 𝑛1 = 𝑛2: symmetrisch um 0
• Summe aller Diskriminanzwerte = 0
• Addition der Beträge von den Gruppenmittelwerten ergibt das Bestimmtheitsmaß R2

• maximiert die Trennschärfe (äquivalent zur Fisher-Diskriminanz)

Alternativ können auch einfache Codierungen (z. B. 1 und 2) verwendet werden, jedoch ist die Fis-
her-Codierung statistisch optimal.

 2.2  Trennfunktion (Diskriminanzfunktion)
Der Datensatz wird in zwei Stufen, jeweils mit Kopfzeile eingelesen, zuerst die Variablen gefolgt 
von der Spalte in der die Diskriminanzwerte D stehen. Die multiple Regression mit D als abhängi-
ger Variabler liefert die Diskriminanzfunktion:

mit: 𝑏0 = Achsenabschnitt der Diskriminanzfunktion
𝑏𝑖 = Diskriminanzkoeffizienten

Diese Funktion ist die Trennfunktion zwischen den beiden Gruppen. Jede Beobachtung erhält einen 
Diskriminanzwert  dij, diese Werte stehen in der Spalte „geschätzt“.  Als kritischer Schwellenwert 
dient der Mittelpunkt zwischen den Gruppenzentren der Diskriminanzwerte:

Zuordnung: wenn dij > 𝐷krit → Gruppe 1
wenn dij ≤ Dkrit → Gruppe 2

Der Wert Dkrit wird auch als Trennmaß TM bezeichnet. Dies entspricht der linearen Entscheidungs-
grenze. Für jede Beobachtung wird geprüft: die tatsächliche Gruppenzugehörigkeit, die zugeordnete 
Gruppe nach Trennfunktion. Daraus entsteht eine Konfusionsmatrix:
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Gruppe1 Gruppe2
Gruppe1: richtig falsch
Gruppe2: falsch richtig

vorhergesagt für
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Daraus ergeben sich die Kennzahlen für die Trefferquote, die Fehlklassifikationsrate und die Sensiti-
vität / Spezifität. Die Diskriminanzwerte der beiden Gruppen werden als normalverteilt angenommen:

Für einen neuen Wert d werden berechnet:

mit den Dichtefunktionen f1, f2. Die Zuordnung erfolgt nach der höheren Wahrscheinlichkeit.

 2.2.1  Analyseaufbereitung der Banknoten

Ausgehend von den Ergebnissen der Clusteranalyse, welche wir als Auszug darstellen:

Nun können wir einen Menüpunkt „Prep. Diskriminanzanalyse“ in OQM-Stat aufrufen und müssen 
die gezeigten Daten komplett einlesen. Das Menü zeigt die folgende Grafik:

Nach dem Einlesen der Daten und dem Drücken des Startbutton erhalten wir eine bereinigte Datei,  
welche für die Diskriminanzanalyse (multiple Regression) genutzt werden kann. Das Ergebnis zeigt 
folgende Tabelle (Auszug).
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Objekt Länge Links Rechts Unten Oben Diagonal Cluster Ausreißer NeuCluster
1 214.8 131 131.1 9 9.7 141 1
2 214.6 129.7 129.7 8.1 9.5 141.7 2 0 2
3 214.8 129.7 129.7 8.7 9.6 142.2 2 0 2
4 214.8 129.7 129.6 7.5 10.4 142 2 0 2
5 215 129.6 129.7 10.4 7.7 141.8 1
6 215.7 130.8 130.5 9 10.1 141.4 2 0 2

Objekt Länge Links Rechts Unten Oben Diagonal D
2 214.6 129.7 129.7 8.1 9.5 141.7 -0.5
3 214.8 129.7 129.7 8.7 9.6 142.2 -0.5
4 214.8 129.7 129.6 7.5 10.4 142 -0.5
6 215.7 130.8 130.5 9 10.1 141.4 -0.5
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 2.2.2  Die Diskriminanzanalyse der Banknoten

Die multiple Regression bestimmt Koeffizienten  b0, b1, …, bp durch Minimierung der Fehlerqua-
dratsumme:

Dies ist äquivalent zur Lösung des Normalgleichungssystems:

Wir lesen die aufbereiteten Daten im Menü der multiplen Regression ein und dabei müssen die 
Checkboxen „mit Regressionkonstante“ und „Ausgabe der Residuen“ aktiviert sein. Mit Anklicken 
des Button „Ausführen“ startet die Diskriminanzanalyse.

Wir kopieren die Objektspalte aus der bereinigten Datei und fügen diese Werte in die Spalte „Nr.“ 
der Residuenausgabe ein. Das Ergebnis zeigt der Auszug folgender Ergebnisse:
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Die Spalten „Objekt, beobachtet und geschätzt“ sind die wichtigsten Spalten, auch für die spezielle 
Ausgabe der Diskriminanzanalyse. Alle weiteren Spalten dienen der Beurteilung einzelner Objekte, 
die letzte Spalte ist die Malahanobis-Distanz und zeigt, ob irgendwelche Objekte Ausreißer sind. 
Cook’s D ist die wichtigste Maßzahl zur Bestimmung sogenannter einflussreicher Beobachtungen, 
während die DFFITS den Einfluss auf das  angepasste Modell anzeigen. Die hauptsächliche Aus-
gabe der Analyse entspricht der multiplen Regression.

Die Diskriminanzfunktion ergibt sich aus der multiplen Regression:

Die Koeffizienten  werden aus den Banknotendaten geschätzt.𝑏𝑗
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Objekt beobachtet geschätzt Residual Std.Residual Hebel stud. Res del. Res Cooks D Dffits MD^2
2 -0.50000000 -0.58977805 0.08977805 0.68525033 0.03127148 0.69622275 0.69523927 0.00223535 0.12491296 4.91557324
3 -0.50000000 -0.60445649 0.10445649 0.79728670 0.02452945 0.80724886 0.80647742 0.00234094 0.12788778 3.64132922
4 -0.50000000 -0.62779025 0.12779025 0.97538663 0.01999352 0.98528603 0.98520697 0.00282935 0.14072058 2.78403826
6 -0.50000000 -0.34814464 -0.15185536 -1.15906882 0.05838823 -1.19446460 -1.19586743 0.01263869 -0.29778976 10.04063897
7 -0.50000000 -0.58521209 0.08521209 0.65039964 0.06639552 0.67312982 0.67212074 0.00460337 0.17924012 11.55401647
8 -0.50000000 -0.60584831 0.10584831 0.80791010 0.03877398 0.82404377 0.82331814 0.00391307 0.16535796 6.33354511
9 -0.50000000 -0.37332376 -0.12667624 -0.96688373 0.05383367 -0.99400943 -0.99397681 0.00803100 -0.23709341 9.17982585

10 -0.50000000 -0.15603273 -0.34396727 -2.62540444 0.02559293 -2.65965927 -2.70518157 0.02654199 -0.43841580 3.84232658
11 -0.50000000 -0.32513161 -0.17486839 -1.33472069 0.05768102 -1.37496431 -1.37834056 0.01653179 -0.34101544 9.90697621
12 -0.50000000 -0.61337049 0.11337049 0.86532475 0.03523127 0.88098298 0.88044165 0.00404895 0.16824925 5.66397357

Anz. Beob.: 190 Ursache SSQ FG MSS F-Stat p-Wert
Anz. fehl. Beob.: 0 TSS 47.50000000 189 0.25132275

R2 : 0.93386988 RSS 44.35881942 6 7.39313657 430.71194364 0.00000000
St.Abw. Error: 0.13101497 Error 3.14118058 183 0.01716492

AIC_ols: -765.46081886 LoF --- --- --- ---
BIC_ols: -742.73165036 pure Error --- --- ---

Variable Koeffizient SE SE (HC2) t_SE t_HC2 p_SE p_HC2 VIF
Konstante 27.87833281 6.58563537 7.39205892 4.23320321 3.77138942 0.00001821 0.00010950

Länge -0.03036790 0.03211821 0.03685717 -0.94550388 -0.82393452 0.17282421 0.20552465 1.41210361
Links -0.11884019 0.04583350 0.04868530 -2.59286771 -2.44098696 0.00514366 0.00779953 2.89433963

Rechts 0.16244973 0.04084699 0.04596566 3.97703042 3.53415424 0.00005020 0.00025901 2.84171583
Unten 0.13846782 0.01070477 0.01137715 12.93514746 12.17069946 0.00000000 0.00000000 2.67613178
Oben 0.14571235 0.01738523 0.01765932 8.38138941 8.25129882 0.00000000 0.00000000 1.96535335

Diagonal -0.21251358 0.01592547 0.01681256 -13.34425969 -12.64017102 0.00000000 0.00000000 3.51021795

BP-Test: 1.31929610 0.25071842 AD-Test: 0.44568399 0.28266382

Regressionsstatistiken für D

Prüfung auf Heteroskedastizität Prüfung auf Normalität
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Jede Variable trägt mit einem Gewicht zur Trennung bei. Große Beträge von 𝑏𝑗 zeigen besonders 
trennwirksame Merkmale. In der Praxis erweist sich häufig die Bilddiagonale 𝑥6 als dominant. 

Rechts in der ANOVA sehen wir, dass die Nullhypothese abgelehnt wird. Wir haben eine gesicherte 
Diskriminanzfunktion. Das Bestimmtheitsmaß R2 ist hoch. Die Varianzen der Residuen sind homo-
gen und die Residuen normalverteilt. Die Variable „Länge“ ist nicht signifikant, trägt zur Trennung 
der Cluster nur wenig bei. Alle anderen Variablen sind für die Trennung der Cluster bedeutsam. Zur  
spezifischen Ausgabe der Diskriminanzanalyse müssen wir ein weiteres Menü aufrufen. 

Nach der Eingabe der Spalten „Objekt, beobachtet und geschätzt“ sowie der Anzahl Variabler p, 
starten wir die spezielle Ausgabe der Diskriminanzanalyse.

In  diesem ersten Teil  der  Ausgabe ist  das  Trennmaß TM berechnet,  es  werden die  Zuordnung 
gezählt und auf Basis einer Normalverteilung der Anteil der richtigen bzw. falschen Zuordnungen 
berechnet. Das Trennmaß berechnet sich für den Fall gleicher Varianzen nach

und für den Fall ungleicher Varianzen nach
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Gruppe1 Gruppe2
Gruppenwerte D: -0.5 0.5 richtig falsch D > TM D < TM

Priors: 0.5 0.5 Gruppe1: 95 0 Gruppe1: 9.27248E-05 0.999907275
Trennmaß: Gruppe2: 95 0 Gruppe2: 0.999907275 9.27248E-05

Name Umfang Mittelwert Varianz St.Abw.
Gruppe1: 95 -0.466934941 0.01785787 0.133633342
Gruppe2: 95 0.466934941 0.013349087 0.115538248
Summe: 190 0 0.015603478 0.124913884

F-Test: F_ratio: 1.337759682 F_tab (.95): 1.406395056 nicht signifikant

0.00000000

Diskriminanzanalyse für D

gezählte Zuordnung wahrscheinliche Zuordnung
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Deswegen wird der F-Test mit den Varianzen durchgeführt, um im günstigen Fall die Gleichheit der 
Varianzen annehmen zu dürfen und die einfachen Formel zu nutzen.

Der zweite Teil (Auszug) ist die wahrscheinliche Zuordnung einzelner Objekte zu den Clustern.

Die Zuordnungen berechnen sich für jede Gruppe:

und dann Bayes:

 2.2.3  Zusammenfassung

Die Diskriminanzanalyse beantwortet die folgenden Fragen:

• Sind die Cluster tatsächlich trennbar?
Die folgende Grafik bestätigt das gute Ergebnis des F-Test der ANOVA F=430.71194364 und einem 
p-Wert = 0.00000000. Dies Ergebnis deckt sich mit dem Hotelling T2-Test in der Clusteranalyse.
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Objekt D beobachtet D geschätzt P(G1|Dhat) P(G2|Dhat) Zuordnung richtig?
2 -0.5 -0.58977805 1.00000000 0.00000000 G1 1
3 -0.5 -0.60445649 1.00000000 0.00000000 G1 1
4 -0.5 -0.62779025 1.00000000 0.00000000 G1 1
6 -0.5 -0.34814464 1.00000000 0.00000000 G1 1
7 -0.5 -0.58521209 1.00000000 0.00000000 G1 1
8 -0.5 -0.60584831 1.00000000 0.00000000 G1 1
9 -0.5 -0.37332376 1.00000000 0.00000000 G1 1
10 -0.5 -0.15603273 0.99991204 0.00008796 G1 1

Zuordnung nach Wahrscheinlichkeiten (Detail)
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Die Grafik zeigt die perfekte Trennung der Cluster und auch kein einzelner Wert überschreitet das 
Trennmaß.

• Welche Variablen tragen zur Trennung bei?
Eine weitere Grafik mit den t_SE beantwortet diese Frage.

Nur die Variable Länge ist nicht signifikant, alle anderen Variablen tragen zur Trennung der Cluster 
echte und gefälschte Banknoten bei.

• Wie zuverlässig ist die Zuordnung?
Die Tabelle der Zuordnungen zeigt ein eindeutiges Ergebnis: kein Objekt wurde falsch zugeordnet. 
Aber man sollte berücksichtigen das 10 Objekte als Ausreißer entfernt wurden. Fragen zu diesem 
Sachverhalt  können mit  der  Identifikationsanalyse und 5 neuen Banknoten beantwortet  werden. 
Eine wirklich sichere Aussage zu diesem Sachverhalt ist nur mit einem zweiten Datensatz, welcher 
unter gleichen Bedingungen vermessen wurde, möglich.
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• Wie sicher ist die Identifikation neuer Objekte?
Um diese Frage zu beantworten berechnen wir die Diskriminanzwerte aller zehn Ausreißer plus 
fünf neuer falscher Banknoten. Das Ergebnis dieser Bewertung:

Bis auf die echte Banknote 70, welche als „gefälscht“ zugeordnet wurde, waren alle anderen Ban-
knoten korrekt klassifiziert. Dieses ist einem standardisierten Residuum von 4.1 zur Mitte des ech-
ten Clusters geschuldet. Wahrscheinlich bedingt durch die Gebrauchsspuren und damit ein herge-
henden Messfehlern. Eine echte Banknote falsch zu klassifizieren hat keine großen Konsequenzen.

Die Diskriminanzanalyse bildet damit das strukturprüfende Gegenstück zur strukturbildenden Clus-
teranalyse.

 2.3  Identifikationsanalyse (neues Objekt prüfen)
Bei der Identifikationsanalyse wird ein Referenz-Cluster oder auch mehrere ausgewählt und jedem 
Referenz-Cluster wird ein neuer Objektvektor 𝑥𝑛𝑒𝑢 hinzugefügt. Wir haben eine spezielle Diskrimi-
nanzanalyse,  welche  als  Identfikationsanalyse  bezeichnet  wird.  Der  Datensatz  besteht  aus  dem 
Referenz-Cluster und einem Cluster nur aus einem Objekt bestehenden Datensatz.

Ziel  der  Analyse  ist  zu prüfen,  ob dieses  neue Objekt  zum Referenz-Cluster  gehört  oder  nicht 
gehört. Dieses entscheidet die Prüfung des Diskriminanzmodell mit dem globalen F-Test. Ist das 
Ergebnis nicht signifikant, dann wird die Nullhypothese bestätigt und das neue Objekt gehört zur 
Referenz. Lautet dagegen das Ergebnis signifikant, wird die Nullhypothese abgelehnt und das neue 
Objekt gehört nicht zum Referenz-Cluster. In diesem Fall möchte man wissen, welche Variablen zu 
einem signifikanten Ergebnis geführt haben. Dies sieht man an der Signifikanzprüfung der Diskri-
minazkoeffizienten.

Will man ein Objekt (Ausreißer, einzelnes neues Objekt) beurteilen, dann wird man wie folgt Vor-
gehen: Die Messwerte 𝑥1, …, 𝑥p werden in den bestehenden Referenzdatensatz eingefügt. Die Fis-
her-Codierung wird angepasst:

• bestehende Gruppe: 1=1/( +1)𝑐 𝑛
• neue Beobachtung: 2=−n/(n+1)𝑐
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Objekt Länge Links Rechts Unten Oben Diagonal D Banknote Zuordnung
1 214.8 131 131.1 9 9.7 141 -0.22039125 echt richtig
5 215 129.6 129.7 10.4 7.7 141.8 -0.55509880 echt richtig
13 215.2 130.8 129.6 7.9 10.6 141.4 -0.55862387 echt richtig
40 213.9 130.3 129 8.1 9.7 141.3 -0.63939154 echt richtig
70 214.9 130.2 130.2 8 11.2 139.6 0.10305909 echt FALSCH

103 214.9 130.3 130.1 8.7 11.7 140.2 0.11720560 gefälscht richtig
161 215.6 130.1 129.7 7.4 12.2 138.4 0.33010867 gefälscht richtig
167 216.3 130.7 130.4 10 10.1 138.8 0.32027679 gefälscht richtig
171 213.9 130.7 130.5 8.7 11.5 137.8 0.64590742 gefälscht richtig
180 214.5 130.2 130.4 8.2 11.8 137.8 0.64534161 gefälscht richtig
201 215.2 130.4 130.1 10.1 11.6 139.8 0.36050035 gefälscht richtig
202 214.9 130.4 130.3 10.7 11.6 139.6 0.52768407 gefälscht richtig
203 215.3 130.4 130.4 7.7 12 139.9 0.11090930 gefälscht richtig
204 215.1 130.6 130.6 9.2 11 138.8 0.42145909 gefälscht richtig
205 214.9 130.5 130.2 8.4 11.6 138.4 0.42145909 gefälscht richtig
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Die Regressionsfunktion wird mit dem ergänzten Objekt neu berechnet. Anhand des globalen F-
Test kann nun entschieden werden, ob das Objekt zur Referenz gehört oder nicht.

• Nullhypothese H0 angenommen: Unterschied zwischen neuem Objekt und Referenz ist zufällig.
• Nullhypothese H0 abgelehnt: Unterschied zwischen neuem Objekt und Referenz ist signifikant.

Zur Interpretation, die ersten fünf Banknoten sind echte Banknoten welche als Ausreißer in der Clus-
teranalyse gefunden wurden. Alle diese Banknoten wurden als Ausreißer bestätigt, sie gehören weder 
zu den echten noch zu den gefälschten Banknoten. Die Banknote 70 würde bei einer Klassifikation 
falsch zugeordnet werden. Die Ursache ist wahrscheinlich ein Messfehler in der Diagonalen x6.

Die weiteren fünf  Banknoten sind gefälschte Banknoten, wobei die Banknote 103 kein Ausreißer 
ist und richtig zugeordnet wird. Die restlichen Banknoten können nicht zu geordnet werden und 
sind somit als Ausreißer bestätigt.

Die letzen fünf Banknoten sind neue gefälschte Banknoten, welche alle richtig zugeordnet werden 
konnten.

Ergänzend muss gesagt werden, man kann ein neues Objekt auch mit Hilfe der Mahalanobis-Di-
stanz MD2 bewerten, signifikante Werte werden rot ausgegeben. 

 2.4  Zusammenfassung der Ergebnisse
Im Banknotenbeispiel zeigt sich typischerweise:

• Sehr klare Trennung der Diskriminanzwerte.
• Geringe Überlappung der Verteilungen.
• Hohe Trefferquote.
• Eine bis drei Variablen dominieren die Trennung.
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Objekt F-Test p-Wert MD^2 p-Wert MD F-Test p-Wert
1 5.1729880 0.0001325 24.3080550 0.0004583 8.8619188 0.0000001
5 3.1837360 0.0070692 16.6122661 0.0108190 21.2706265 0.0000000
13 2.9005438 0.0124993 15.3762952 0.0175235 15.3000786 0.0000000
40 5.1252686 0.0001455 24.1414024 0.0004919 24.1774206 0.0000000
70 4.2194827 0.0008785 20.8197740 0.0019765 2.3230800 0.0394610

103 3.2463919 0.0062303 16.8804918 0.0097326 1.6914613 0.1323014
161 11.3259647 0.0000000 40.7028759 0.0000003 3.3146923 0.0054285
167 9.9995435 0.0000000 37.8555115 0.0000012 5.4538279 0.0000765
171 16.2781142 0.0000000 49.1880778 0.0000000 5.6179482 0.0000556
180 15.4501640 0.0000000 47.9626359 0.0000000 3.3055206 0.0055299
201 7.4199676 0.0000019 31.3461022 0.0000218 0.5576375 0.7628209
202 10.9057812 0.0000000 39.8326459 0.0000005 0.2605826 0.9536891
203 3.9548907 0.0014940 19.7890402 0.0030192 1.9354937 0.0836623
204 8.4704539 0.0000003 34.1708793 0.0000062 1.1053400 0.3656499
205 9.6804446 0.0000000 37.1245359 0.0000017 1.2651133 0.2815898

gefälschtecht
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Die Analyse bestätigt somit: Die Clusteranalyse hat eine reale, physikalisch interpretierbare Klas-
senstruktur entdeckt. Doch erst die Kombination aus:

• Clusteranalyse (strukturbildend)
• Diskriminanzanalyse (strukturprüfend)
• Identifikationsanalyse (neue Objekte)

ermöglicht  eine  objektive  Qualitätskontrolle,  automatische  Klassifikation  und statistisch  abgesi-
cherte Entscheidungen. Im Fall der Banknoten heißt das: Eine neue Banknote kann anhand weniger 
geometrischer Messgrößen mit quantifizierter Sicherheit als echt oder gefälscht identifiziert werden. 
Dieses Beispiel zeigt den vollständigen Analysezyklus:

• Explorative Clusteranalyse
• Bestätigung durch Diskriminanzanalyse
• Ableitung einer Trennfunktion
• Wahrscheinlichkeitsbasierte Klassifikation
• Identifikation neuer Objekte

Damit wird aus einer rein beschreibenden Analyse ein entscheidungsfähiges statistisches Verfahren.
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